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1 Statement of Work

Short- and Long-term Effects in Prostate Cancer Survival: Analysis of Treatment Efficacy and
Risk Prediction
Alexander Tsodikov, Ph.D.

There has been no change in the scope of work. In order to compensate for the period of inactivity
associated with the change of the PI institution last year, a no cost extension of one year has been
granted. The payment schedule and percent effort of the personnel on the grant was modified
accordingly and payments have been spread equally over the two years starting with the grant
transfer. A breakdown below shows what has been accomplished in the first two years of the
project.

Tasks accomplished in the first 8 Months of the project at the University of Utah

Task 1. Develop model-building techniques

Task 2A. Develop estimation and hypothesis testing

(a) Develop point estimation

(b) Develop simulation algorithms

(c) Develop hypothesis testing

Tasks completed at the University of California at Davis during year 2

Task 2B. Develop estimation and hypothesis testing

(d) Develop software implementation

(e) Study models and methods by simulation

Task 3. Develop variable selection procedures

Task 4A. Preliminary analysis of the data for significant effects

(a) Apply estimation, hypothesis testing and variable selection to a test subset of SEER data.

Tasks to be completed at the University of California at Davis during year 3

Task 4B. Continue analysis of the data for significant effects

(a) Continue application of estimation, hypothesis testing and variable selection to SEER and
MSKCC data.

(b) Identify a model for prostate cancer biochemical recurrence, prostate cancer specific sur-
vival, and overall survival using methodology and software developed in Tasks 1-4.

Task 5. Computer-intensive approaches to prognosis and validation
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2 Objectives

There has been no change in the project objectives. The specific aims of this project are

1. To provide a statistical model that reproduces the complex survival responses in prostate cancer.

2. To develop methodology for analysis of prognosis after treatment for prostate cancer taking into
account the long- and short-term effects of prognostic factors and treatment.

3. To develop statistical software implementing model-building, estimation, construction of prog-
nostic indices, conditional survival prognosis, and assessment of the quality of prognostic clas-
sifications based on the new models.

4. To apply the models and methodology to analyze post-treatment survival of patients with
prostate cancer using data from the Memorial Sloan Kettering Cancer Center and the SEER
database.

3 Introduction

The goal of this proposal is to investigate a novel approach to the analysis of post-treatment
survival of prostate cancer patients: the decomposition of the diversity of survival patterns into
short-term and long-term effects. We proposed to identify a model of prostate cancer survival
incorporating long- and short-term effects of prognostic factors and treatment. Novel statistical
tools are being developed to make such models work for better prognosis of prostate cancer pa-
tients. Year 1 at the University of Utah was primarily devoted to development of methodology for
point estimation and hypothesis testing. While continuing methodological research in Year 2, we
focused on the delivery aspect of the progect addressing software development and implementation
of the algorithms, testing them by simulations, development of tools for multivariate analysis and
variable selection and preliminary applications of these tools to real data.

4 Nonlinear Transformation Models

Definition 4.1 Let -y(x 13, z) be a parametrically specified distribution function with x-domain
being the interval [0, 1]. Let F(t) be a nonparametrically specified baseline survival function. A
semiparametric regression survival model is called a Nonlinear Transformation Model if, condi-
tional on the covariates z, its survival function G can be represented in the form

G(t 13, z) = -y(F(t) I 73, z). (1)
The function -y is called the NTM-generating function by analogy with the probability generating
functions.
Note that F(t) = exp(-H(t)) where H(t) is the baseline cumulative hazard function.

The class of NTM was developed in Year 1 of the project. In the Year 1 report we proposed
the Quasi-EM (QEM) algorithm for ML estimation. The algorithm is based on imputation of the
predictor in a Nelson-Aalen-Breslow-like estimator using the posterior risk function

Y I ") (2)
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where -(c)(xC) = acy,(x .)/Oxc , c = 0,1,..., () = (x). The key requirement that

ensures monotonicity, convergence and an EM-like behavior of the QEM algorithm is that the
function 0-(x ., c) is nondecreasing in x.

Let ti, i = 1,... , n be a set of failure times, arranged in increasing order, tn+1 := 00. Associated
with each ti is a set of subjects Di with covariates zij, j E Di who fail at ti, and a set of subjects
Ci with covariates zij, j E Ci who are censored at time t E [4, t4+ 1). The observed event for the
subject ij is a triple (ti, zi, cIi), where c is a censoring indicator, c = 1 if failure, c = 0 if right
censored. Let H be the baseline cumulative hazard, with H(0) = 0. We assume than H(t) is
a step function with jumps at the failure times ti, i = 1,... ,n. As a step-function, H can be
characterized by the vector h = (hl, ... , hn2 ), where hi is the jump at ti. With this notation, under
an NT model and non-informative censoring, the likelihood of survival data takes the form

n2 n

f Di log(hi) + log (Fi i, ,ziji), (3)
i=1 i=1 jiciuDi

where
9 (X ,c) = XCIC)(X

Di is the number of failures associated with ti and

Fi = F(ti) = exp(- hi).
1=1

Differentiating f with respect to h and setting the score equal to 0 we obtain h(/3) as the solution
of the functional self-consistency equation

Dm"hnOn(=T 1, .. .,n, (4)

where Fi is a function of hl,..., hi, 0 is given by (2) and 7Zm is the set of subjects at risk just
prior to tL, 7rZ, = {(i, j) : i > m, j E Ci U Di}.

Solving the self-consistency equation by iterations in h (the QEM procedure), we obtain its
solution as a fixed-point of a contracting operator.

5 Hypotheses Testing

5.1 Existing methods

In semiparametric models considered in this project, the parameter is partitioned as (j3, H) with
/3 a low-dimensional parameter representing regression coefficients, and H a high-dimensional
nuisance parameter, representing the baseline cumulative hazard.

Consider the profile likelihood

fpr(/3) = max f(3, H).
H

The observed profile information matrix will be denoted IpJ,

'pr -_ ap(13)

We compare our method to the following three existing techniques used to estimate the profile
information matrix that amount to particular forms of numerical differentiation of the second
order.
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1. Discretized second derivative. Corollary 3 of [Murphy and van der Vaart, 2000] shows that under
certain conditions

--2 log f'pr( P + hn vn) - 109 •'pr (0) - J--- TI vir ,

nhp

for all sequences Vn -> v E Rd and h, --> 0 such that (#-•hn)- 1 = OP(l).

This result can be used to derive an estimate of Ipr. We use its deterministic version with
Vn - v = alei + a2e, I < i < j < d, where ei are Euclidean basis vectors and a,, a2 = 0 or 1.

2. Fitting a Quadratic Form. In many cases the profile likelihood surface around the true / is
asymptotically quadratic. Nielsen et al. [1992] proposed fitting a quadratic form to fp,(,3) in

some domain around the maximum likelihood estimator, ), and to derive an approximate profile
information matrix using the estimated coefficients of the form. Specifically, let A/3 be a vector
of deviations of the /3 values sampled in the vicinity of /, and let A.pT be the induced vector of

deviations of the profile likelihood from its maximum value, fp, (/3). Then, if A/0 is sufficiently
small 1

Fitting the quadratic form (1/2)AOT AA/3 to points (A0, AXp) by least squares produces an

estimate, A, of the profile information matrix Ipr.

3. Numerical Differentiation of the Profile Likelihood. Standard numerical algorithms can be used
to numerically differentiate a function. The procedure usually involves evaluating the target
function at some pre-specified knots and interpolating the surface. The interpolating function
can then be differentiated to estimate the curvature of the surface. We use Ridder's method
[Press et al., 1994] in the examples presented in Section 5.3.

Globally the likelihood surface is not quadratic. The quadratic approach has the difficulty that
"a sufficiently small domain around / where the likelihood surface can be well approximated by
"a quadratic form is not well defined. It our implementation of this method we limit the domain
to points that are not rejected at 0.05 significance level by the LR test (applied informally).
Numerical errors with the quadratic method often lead to estimates of the profile information
matrix that are not positive definite, particularly if the number of covariates is large.

5.2 The new exact method

Denote by h a vector representing a set of jumps of the cumulative hazard function hi = H(ti) -
H(ti - 0).

Implicit differentiation of the profile likelihood yields the following expression for the profile
information matrix

Ip = 1/3;3 + hT Ihhhf3 + hzIh;/• + izhj3 , (5)
where

ah a2f (/, h)
h g 0 and 'ab - aabT (0,)

with a and b equal to /3 or h.
Notice that I'p has dimension d x d, d = dim(/3). Therefore only a small matrix needs to be

inverted in order to get an estimator of the covariance matrix of regression coefficients.
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The difficulty in (5) is that since h(i3) is defined implicitly, so is the potentially large Jacobian
matrix ah•/ao. Therefore, the Jacobian is generally unavailable in a closed form. The success
in the calculation of the profile information matrix is determined by the existence of an efficient
numerical method to compute h0l/).

For Nonlinear Transformation Models considered in this project, aht/O/ can be obtained by
solving a system of linear equations with a special structure. This specific structure of the linear
system can be exploited to derive an efficient numerical solution given in Proposition 5.1.

First we obtained I, Ih, and Ihh.

The H-score of an NT model is,
&• Dk ((F(6)

0hk hk - Z ci(6
(i,j)C7m

Differentiating the H-score with respect to 0 we get,af2 ac)
ah (0- Fi 1,-i, i) (7)

OhkO/3m
(i,i)C7Zk

Evaluation of derivatives of 0 or -y with respect to Q depends on the parameterization of the
model's predictor as a function of explanatory variables z, which is model-specific. Once a model
is specified, the calculation of 13 and Ihz is straightforward.

Since Fi = exp(- EI=I hi), we have
aE)(Fil. Q(F I .), m_<i,8ahm 0, m > i,

where O= (xIc) - (e(xlc)-c)(0(x cc+1) - (xlc)). (9)
Q(xl.,c) O- x

Note that 00(Fi I -)/Ihm is a constant in m for m < i or m > i.
From (8) it follows that,

a2e Dk (10)O2 -- E Q(Fi 10, zj,ij) + ± l{km},(10)

OhkOhm, ) k

where i" 1, k = ,
l = 0, kem.

FRom this we get Ihh.
Now we turn our attention to the Jacobian Oh/0f3. Proposition 5.1 gives the main result used

to efficiently calculate Oh/O,3 in the case of NT models.
Proposition 5.1 Let D be an n x n diagonal matrix with diagonal elements di # 0, i = 1,... , n.
Let R = (Rkl) be an n x n matrix, with RkI = Zi=max{k,I} ai, where ai, i = 1,... n are real numbers.
Let b be an n-dimensional vector.

Define the functions pOk : IR R-+ I, k = 1,... , n recursively as
b, an

k(Y) bk aiy+ aii(y), k=n-1,...,1,
• 7(Y) -d7i=k l=k+l i=k
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for y in R. Let 9 " IR --+ R be the function given by ý(y) = En 1ck(y) and let

9(0)
1 + m?() - 97(1)

Then the solution to the system of equations (D + R)x - b is the n-dimensional vector x =

We now show that the Jacobian Ahl/a)fl satisfies a relationship of the form as discussed in
Proposition 5.1. Differentiating the self-consistency equation (4) implicitly, we get that h satisfies
the relationship

- hm m Q(Fi 10, zij, cij)- -- (o z/3-,--c) (11)

9i0k Dm /=1 (i,j)E1Z.... {, } (ij)90km /

where Q is the function given in (9).
Let D be the diagonal matrix with elements

Dm
dm =- , m2 1,...,d.

Let R = (R),.with R I = EZi=max{m,l} ai, where
ai= E Q(Fil0, ziy, cij), i~l,...,n

jEciuDi

and for k= 1,...,d let
b (k)---(( 90ElE g(Fi flZij, Cij)o/k "''(ij G• O(Fi flzij' cij)!Ol

(ij)R Dfk )
It follows from (11) that

A = _ D- 1 R - b (k)

190k (90!k

Hence,
(R + D) Oh = b(k).

Therefore, for each k = 1, ... , n the vector Oh//lk can be obtained from Proposition 5.1. We now
have all the components of (5) defined. This completes the exposition of our method.

5.3 Comparison of methods

We compared the performance of four methods to compute the observed profile information matrix:

1. Discretized. The estimation is based on the result of Corollary 3 in Murphy and van der Vaart
[2000].

2. Quadratic. This approach approximates the profile likelihood surface by a quadratic form and
derives the estimate of the information matrix from the coefficients of the form fitted to the
surface (Nielsen et al. [1992]).

3. Numerical. The calculation of the observed profile information matrix is carried on using Rid-
der's numerical differentiation of the profile likelihood function (Press et al. [1994]).
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4. Exact. This is our new method.

PO model was used as a basis for all our comparisons. The validity of NPMLE and the profile
likelihood for this model has been demonstrated elsewhere.

5.3.1 Real data

We continue the example considered in Year 1 report. We use data from the National Cancer
Institutes Surveillance Epidemiology and End Results (SEER) program. Using the publicly avail-
able SEER database, 11621 cases of primary prostate cancer diagnosed between 1988 and 1999.
Two groups of patients representing stage at diagnosis of the disease are considered, hence the
predictor in the PO model has a single parameter 3. The log odds ratio 3 measures the disad-
vantage of being in the distant stage relative to local/regional stage. The QEM algorithm was
applied to fit the PO model to the data. The maximum likelihood estimate of 3 is 3 = -3.251.
Confidence intervals for fi were obtained using the Wald statistic based on the profile information
matrix. The confidence interval based on the quadratic approximation of the profile information
matrix is (-3.416, -3.086) and the one obtained through the exact profile information matrix is
(-3.415, -3.086). Excellent concordance of the two confidence intervals is due to the large sample
size and the small dimension of the regression parameter, a situation when approximating methods
tend to be accurate.

In the case of a single parameter, the observed profile information matrix is a scalar. The
estimates of the observed profile information matrix are 142.1011, 141.2158 and 141.7424 for the
Discretized, Quadratic and Numerical approaches respectively and the Exact value is 141.7423.
Although the values are quite similar it is clear that the discretized and quadratic approaches
depart from the true value.

5.3.2 Simulations

Simulations were performed using a parametric PO model where the baseline survival function F
was specified according to a Weibull distribution. In a set of experiments, samples of size ranging
between 100 to 1000 were generated from the Weibull PO model with one continuous covariate
uniformly distributed on [-1,1], with regression coefficient 33 = 3.45 and one categorical covariate
(Group) with 3 levels. Simple contrast was used to code for the levels of the Group with regression
coefficients of /1 = 1.3 (Group 2 vs. Group 1), and P32 = 2.4 (Group 3 vs. Group 1). The baseline
survival function F was generated from a Weibull distribution with shape parameter 2 and median
of 1.33. Censoring was generated from a Weibull distribution with both shape and median equal

to 1. To assess the speed of performance of the three methods we calculated the number of
operations required to compute the exact information matrix and its approximations. Evaluation
of 0-, -', their analytically specified derivatives or similar comparable procedures were counted
as one operation. Figure 1 shows the number of operations by sample size and method. The
estimation algorithms were calibrated so that the relative error of the three methods (Discretized,
Quadratic, Numerical) was about the same. Regardless of the sample size, the exact calculation
outperformed the approximate methods. Inference based on the discretized second derivative
requires between 10 and 30 times as many operations as the exact calculation. The quadratic
approach requires between 60 and 200 times as many operations as the calculation of the exact Ipr
matrix. The numerical method is computationally very costly requiring between 600 and 7000 as
many operations as the exact approach. However, the numerical approach behaves better than the
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Performance

5.OE+08

5.OE+07

UQuadratic

0.o-.2 5.0E+06

O 5.OE+05 Discretized

A A Exact

5.OE+04

5.0E+03

0 200 400 60Q 800 1000

Sample Size

Figure 1: Operations by sample size characteristics of three methods of computation of the ob-
served profile information matrix. The Exact method developed in this paper shows the highest
numerical efficiency.

other two methods in terms of relative error. A sample of size 500 was used to find the smallest
possible relative error of the method when adjusting the different parameters involved. The best
relative error achieved by the Discretized method was 0.01 and 8.13 105 operations were required.
This number was 0.013 for the quadratic approach with 5.32 106 operations required, while the
numeric approach achieved a relative error of 8 10-' and required 3.87 108 operations.

As the Exact method makes no compromise and delivers the exact numerically efficient solution
to the problem for the class of semiparametric Nonlinear Transformation Models, there is little
point in using other alternative procedures with such models.

6 The meaning of imputation operator (

Consider a PH mixture model

G(t 1)3, z) = E { F(t)U(0,z) z}, (12)

where U is the frailty random variable. Suppose, we have an observation (t, z, c) sampled from the
PH mixture model under independent censoring, where t is an observed survival time and c is a
censoring indicator (c = 0 if t is a censored survival time, and c = 1 if t is a failure). Then, under
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the PH mixture model (12), the conditional expectation of U, given the observed event (t, z, c) is
given by E f{U(.) I t,.-, c} = (09 o F)(t I[-, c) = On [F (t) I., c],

where the function e is given by (2). For brevity, we use (.) to suppress covariates and regres-
sion coeffitients 3, z. While 0 is defined for NTMs, we also consider the probability generating
functions subclass of -ys associated with the PH mixture model as a motivation and to better
understand the conditions that make the NTM-QEM tandem work.

Cauchy-Schwartz inequality can be used to show that for any PH mixture model, 0 [x .,c]
is nondecreasing in x for any c = 0, 1. The nondecreasing character of the function 0 in the

above statement is quite natural. The longer the subject stays event-free, the lower the subject's
posterior risk, represented by 0. So Of{F(t) I*, c} must be a nonincreasing function of t for both
failure (c = 1) and censoring (c = 0) events. Since the survival function F(t) is nonincreasing
in t, 0(x ., c) must be nondecreasing in x. It is interesting to note that the population hazard
function for a heterogeneous population under the PH mixture model is expressed as A(t I z) =
Of{F(t) I ., 0}h(t), where h is the hazard function corresponding to F. Even if h(t) is increasing,
the observed population hazard function may be a decreasing one through the decreasing behavior
of 0-{F(t) 1., 0} with time. This observation represents a selection effect of the risk set becoming
"healthier" with time, as frail individuals leave the population. This effect was discovered and
extensively studied in demography [Vaupel et al., 1979] in the context of misinterpretation of
mortality trends.

With -y representing a PH mixture model, kth moments of the mixing variable U, k = 1, 2,...,
can be obtained through derivatives 3`(k). Both 0) and QEM are defined using the derivatives up
to second order of -y, k = 1, 2. Based on the above observations, NTM-QEM tandem is defined
to follow second-order properties of the Frailty-EM frame. This is all that is needed to ensure the
EM-like behavior of the QEM, and existence of all derivatives of 'Y (still a weaker assumption than
that of a frailty model) is excessive for purposes of statistical inference.

As discussed in [Tsodikov, 2003], the property of non-decreasing E) represents a generalized form
of Jensen inequality on the primitive class of functions necessary to handle the QEM algorithm.

In addition to being a non-increasing function of time, the posterior risk E {U(-) It, ., c} for PH
mixture models (-y E P) has the following two natural properties.

1. Other things equal, the posterior risk of a failure is at least as high as a posterior risk of a
censored subject E {U(.) It, ., 1} > E {U(.)I t, ., 0}. This statement is valid in the general NTM
form (see proposition below).

2. Since a censored observation at time t = 0 does not contribute any information on the risk,
posterior risk for t = 0, c = 0 is the same as prior risk E {U(.)}. Expressing the mean of U
through its p.g.f. -y E 7P, we have E {U(.) 0, -, 0} = E {U} = -y'(11.).

Proposition 6.1 Surrogate of posterior risk for NTM.
Let 0-(x ., c), be the function defined by (2) and induced by some NTM generating function 3Y,
given an event (t, ., c) observed on a subject. Then

(A) If 0-(x I.) is a non-decreasing function of x, then

E)(F(t) 1., 1) 2 E)(F(t) I., 0) > 0 (13)

(B) If -y e 7) is a p.g.f, of some nonnegative random variable U, then

E{UIt,.,1)} > E{UIt,.,0)} > 0 (14)
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E{U 0,., 0)} = E{U 1 .} =y -'(1 .) (15)

The graph of typical behavior of the posterior risk is given in Figure 2 based on the real data

example considered earlier in this report.

Distant Stage Local/Regional Stage, baseline

60 --
2.0

Posterior risk,
50 Failure

40 1.5

n 30 E
Prior risk U Prior risk._. . . . .2 . . . . . . . . 1.0. .........

~20 
.4co ..

Posterior risk,
10 Falure 0.5

Posterior risk,
Posterior risk, Censored
Censored

0.0 -.- .-. . . . . .

0 100 200 300 0 100 200 300

Time to event (months) Time to event (months)

Figure 2: Posterior risk 0(F(t) 1 3, z, c) as a function of time to event t by type of event (failure,

c = 0 and censoring c = 1), and Stage (z) (Local/Regional and Distant)

7 Compound models

In the Year 1 of the project, we developed a composition device for constructing hierarchical

Nonlinear Transformation Models compatible with the QEM estimation framework. In this section
we put this device into practice and show how is can be used to build new models that combine
the features of simpler submodels.

7.1 PHPH Cure Model

This model extends the Improper PH model by introducing a PH short-term effect on the nor-
malized baseline cumulative hazard F -+ F>(•'z),

G(t 1/3, z) = exp {-0(,3, z)[1 - F(t)'('z)]}. (16)
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Here we note that the model is constructed by composition of NTM generating functions for the
Improper PH model -y0(x) = e-°('-x) and the Proper PH model %y,,(x) = x",

70q, (x ') = 'yo(X ) 0 3'q(X I1) =

[exp{-0(.)(1 - x)}] o [x-'(')] exp {-0(.) (1 - X7,(.)) }. (17)

A review and history of this model is presented in [Tsodikov et al., 2003].
Note that 3'0 is a p.g.f. of a Poisson random variable, and -y,, is a p.g.f. of a nonrandom variable.

Therefore the composition is a particular case of Aalen's device [Aalen, 1992]
v(0o,-) 0

U(3, z) = Z 4k(/3n,,Z), =0, (18)
k=1 1

with v being Poisson(O), and 71 ri being nonrandom.
The chain rule developed in Year 1 immediately leads to

E(x .,c) = 0(.)r7(.)x?() + crq(.). (19)

7.2 F-frailty model

Now, consider a model composed of the PH and the PO models.
The F-frailty model can be built as a composition of the NTM-generating functions corre-

sponding to the PO and the proper PH models. As a result of the composition 'y = yo o y,, we
have

h {tI o(.), i(.)} = 77(0) (20)
0 (.) + H(t)J

Indeed,

k0(.)+S]
is the Laplace transform of a F-distribution with scale parameter 0 and shape parameter r7, and
we have the interpretation of the compound model (20) as a F-frailty model.

Note that since an exponentially distributed random variable corresponding to -yo is a contin-
uous one, the above composition is not a particular case of (18).

The compound 0 is derived from the chain rule is

8(X C))= Y o + C (21)÷(• .,)-0(-)- log ,"

7.3 Score test for long- and short-term effects

Keeping in mind the challenge of computer intensive regression and prediction approaches to
the analysis of large sample prostate cancer data to be undertaken in Year 3, we addressed an
alternative strategy of two-sample testing based on the partial likelihood in a time-dependent PH
model [Bro~t et al., 2004]. The two-sample statistics are suited for testing equality of survival
functions against improper semi-parametric accelerated failure time alternatives. These tests are
designed for comparing either the short- or the long-term e.ect of a prognostic factor, or both,
and are thus based on a model conceptually similar to PHPH. The model was motivated by the
Weibull distribution,

G(t 1/3, z) = exp {-0(/3, z)[1 - exp {-H(t)71(0z)}]}, (22)
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where H is a baseline cumulative hazard. The proposed tests can be easily implemented using
widely available software. This strategy may be used in regression tree methods where a fast
two-sample test is needed that would take long- and short-term effects into account. A breast
cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests.

Generally the idea is to construct a compound model where one of the submodels for the
long-term effect is the PH model. Let /31, f12 be the two regression coefficients modeling long-
and short-term effects, respectively. For the score test, /3. -+ 0. The cumulative hazard for the
compound model is expanded into a Taylor series, and linear terms in /31 and two are kept in the
derivation of the test statistic. Since the PH model is a long-term effect submodel, this expansion
leads to i3, + /32w(t), where w is some non-decreasing function modelled nonparametrically. For
the test for short-term effect and the test for homogeneity, the model under the Null hypothesis
is a PH, and the score test is based on well known estimated for the PH model. The score two-
sample statistics has asymptotic X2 distribution with one (test for short-term effect) or two (test
for homogeneity) degrees of freedom.

The test for long-term effect represents the most difficult case, as the model under the Null
hypothesis is not PH. Efficient estimators for /32 and w need to be derived. A derivation of ib; and

/32 could be achieved through an QEM iterative procedure based on the self-consistency equation.
However, this would defeat the purpose as same algorithm delivers an exact maximum likelihood
solution and hypotheses testing for the full model as described above. For computational simplicity,
we examined an approximation where only the first-step estimators are used in the proposed score
statistic. The procedure is as follows. At first step, zi is taken under HO where the cumulative
baseline hazard is replaced by the Nelson Aalen estimator and /2 is taken as the partial likelihood
estimator obtained in the corresponding time-dependent PH model. At second step, /32 thus
obtained, is used to update ib using the self-consistency equation in the form of a Nelson-Aalen-
Breslow estimator. It was shown by simulations that the resulting statistics is approximately X2

distributed with one degree of freedom. We refer to [Bro~t et al., 2004] for details.

8 Data analysis and properties of the QEM-based esti-
mates

8.1 Real data examples of compound models

As another example, we use SEER data on 39393 cases of primary prostate cancer diagnosed in
Greater San Francisco between 1973 and 2000. Prostate cancer specific survival was analyzed by
stage of the disease (localized/regional, 35230 patients, vs. distant, 4163 patients).

Two basic models PH and PO, and two hierarchical compound models produced by composi-
tions of PH and PO model generating functions, F-frailty model (20), and the PHPH cure model
(16), were applied to fit the data. Stage of the disease was represented through two indicator
dummy variables combined into a vector z. Local/Regional stage was considered as a baseline
group and the corresponding regression coefficient restricted to 0 for identifiability. Regression co-
efficient /3 for the distant stage codes for the difference in survival between the two stages expressed
either as a log hazards or log odds ratio, dependent on the type of model generating function where
it is used. The basic models have one predictor O(03, z) = exp(/3z), where z=Indicator("Distant
stage"). Compound models have two predictors, O(3oo, z) = exp(/3oz) and rj(/3•,z) = exp(/3Oz)
coding two hazard ratios, long-term effect and short-termn effect, respectively, in the PHPH cure
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model, and odds (0) and hazard (7,) ratios in the F-frailty model. In the latter model, odds and
hazard ratio predictors have the interpretation of the scale and shape parameter of the frailty
distribution, respectively. Regression coefficients in the PH model (30) and the PH submodels
of the PHPH ( 30,0,/3) and F-frailty models (03.) measure the disadvantage of being in the distant
stage relative to local/regional stage as a relative risk. Regression coefficient in the PO model (030),
and the one in the PO submodel of the F-frailty models measure the difference from an opposite
point of relative odds of survival. Since risk and odds of survival are opposites (high risk is bad,
high survival is good), these coefficients are expected to be of opposite signs for in the PO and
the PH model fitted to the same data.

Observed (Kaplan-Meier) and expected model-based estimates of the survival functions by
group are shown in Figure 3.

Parameter estimates and confidence intervals are shown in Table 1.

Model Parameter Point- Confidence p-Value
estimate interval

PH /0 2.380 (2.328,2.432) <0.001

PO 0 -3.086 (-3.162,-3.011) <0.001

PHPH Improper PH: 00 1.065 (0.923,1.207) <0.001
Proper PH: /3O 1.788 (1.620,1.956) <0.001

F-frailty PO: f0 -3.369 (-3.580,-3.158) <0.001
PH: On -0.179 (-0.301,-0.057) <0.001

Table 1: Parameter estimation and hypothesis testing for prostate cancer data based on PH,
PO, PHPH and F-frailty models. Negative Q in the PO effect and positive 3 in the PH effect
correspond to worse survival and vise versa.

Confidence intervals and hypotheses testing is based on the inverse of the observed profile
information matrix.

From Figure 3 it is evident that F-frailty model provides the best fit to the data. The PO

model is second best. Given the hierarchical structure of F-frailty model, its goodness of fit can be
tested vs. the PO model. This is a test for /. = 0 in F-frailty model, and it results in a significant
difference X' = 7.50, p = 0.006. The deviance with all other models exceeds 60, and we focus on
the F-frailty model as the best choice at the level of model complexity considered so far. We could
have tried to improve on the fit by using compositions of three or more submodels, but felt that

the improvement over the F frailty model would be irrelevant for our data. All models indicate a
highly significant effect of stage (p < 0.0001), which is a trivial conclusion in this case.
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Proportional hazards model Proportional odds model

A 1.0 Local /Regional B 1.0 Local / Regional
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Figure 3: Prostate cancer cause-specific survival by stage. Observed (Kaplan-Meier) and expected
survival curves for four models.
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The validity of standard maximum likelihood theory as applied to the F-frailty model (20) will
be studied by simulations further in this report. As the first observation, in Figure 4 we show
that the form of the profile likelihood fp, in regression coefficients P. (log hazards ratio) and P0
(log odds ratio) is remarkably quadratic. In the next section we will verify by simulations that
the curvature of the profile likelihood surface leads to consistent estimates of the standard errors
of/3.

-39810 -39810
0 0
o -39820 o -39820

5 -39830 . -39830

p -39840 2 -39840
-39850 

-39850

-0.6 -0.4 -0.2 0.0 0.2 -4.0 -3.5 -3.0 -2.5

Log Hazard Ratio Log Odds Ratio

Figure 4: Profile likelihood as a function of regression coefficients sampled around the MLE point.

8.1.1 Crossing survival curves

The potential and flexibility of the PHPH model is illustrated in the following real data example
of crossing survival curves [Wendland et al., 2004]. In 9 SEER registries, 8,036 females were
identified who were diagnosed with Hodgkin's Disease (HD) between 1973 and 1999. Of these
women, 183 (2.3%) were subsequently diagnosed with breast cancer. The use of radiation therapy
in the treatment of HD resulted in an increased risk of development of breast cancer (SIR=1.90,
piO.01). The Kaplan-Meier curves for women treated with and without radiation therapy cross at
roughly 18 years after the diagnosis of HD (Figure 5). The log-rank test and proportional hazard
regression model failed to detect a difference (p=0.79) in breast cancer free survival. Figure 6
demonstrates that the expected survival curves under the PH model are virtually the same for
the two groups. The PHPH regression model and software developed in this project in Year 2
revealed that the use of radiation therapy had an adverse effect on long-term survival (relative risk
[RR] =1.84, p=0.01), but was associated with a short-term survival benefit (RR=0.45, p=0.01).
Use of the PHPH model and algorithms for hypotheses testing reported above indicates that the
use of radiation therapy in the treatment of HD results in an increased long-term risk for the
subsequent development of breast cancer, but confers a short-term benefit. The observed and
expected survival curves using the PHPH model are in a very good agreement (Figure 7).

With the preliminary data analysis of prostate cancer both Gamma frailty model and the
PHPH model provide a reasonable fit and sensitivity to the observed effects. The breast cancer
example was invoked above to highlight a situation where the PHPH model is superior. While
the Gamma frailty model would be a better fit than the PH, it still fails to reproduce crossing
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Breast Cancer Free Survival
by Radiotherapy
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Figure 5: Kaplan-Meier curves for women treated with and without radiation therapy
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Breast cancer free survival after Hodgkin's disease
Observed vs. expected under the PH model
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Figure 6: Observed Kaplan-Meier curves for women treated with and without radiation therapy,
and their expected counterparts under the PH model.
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Breast cancer free survival after Hodgkin's disease
Observed vs. expected under the PHPH model
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Figure 7: Observed Kaplan-Meier curves for women treated with and without radiation therapy,
and their expected counterparts under the PHPH model.
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curves observed in Figure 5 (not shown). We intend to keep both models in our prostate cancer
analytic arsenal in case some carefully defined subsets of prostate cancer patients demonstrate
similar effects.

8.2 Simulations

We begin by fitting a parametric F-frailty model (20) to the prostate cancer data with the baseline
survival function specified as Weibull distribution. The fit (not shown) is very similar to the
semiparametric version of the model, and the parameter estimates are as follows, /3o = -3.454,
On = -0.215, and [median of F]=265.571, [shape of F]=1.491.

Each simulation experiment was replicated 1000 times. Four sets of experiments were gener-
ated with samples sizes of 100 to 1000. Shown in Figure 8 are normal probability plots for the
components of /3 = (3o, 0,)4. As evident from the figure, small sample size may be associated

with some departure from normality of MLEs, however, with a sample size larger than 300 the
estimates look perfectly normal. Shown in Table 2 are the results of simulations evaluating bias
and variance of the estimates. Empirical means of f1 show good correspondence to the true pa-
rameter values used to simulate the data and are within the margin of error expected from 1000

replicates. Empirical standard errors Sj{/ } estimated from replicated regression coefficients are in
excellent correspondence with the EJ{QY}, the empirical mean of the replicated 'pr-based estimate
of standard errors. The precision of variance estimation S{1&0} improves rapidly with the sample
size.

Parameter En{/3} Sf{,3} Ej{&1 } S•{f&} Sample
size

PH: /3o -3.168 1.394 1.451 0.415 100
P0: f3•, 0.117 0.725 0.700 0.481

PH: /3o -3.478 0.741 0.744 0.072 300
PO: 3,1 -0.113 0.308 0.304 0.058

PH: 13( -3.352 0.535 0.553 0.034 500
PO: On,• -0.159 0.220 0.228 0.026

PH: flo -3.433 0.392 0.391 0.018 1000
PO: 0,0 -0.197 0.158 0.157 0.012

Table 2: The results of computer simulation to verify asymptotic properties of profile likelihood
based MLEs.
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Normal probability plots of log hazard ratio by sample size
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Figure 8: Normal probability plots
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9 Software and data analysis

In this section we give an example of multivariate analysis of prostate cancer specific survival. A
random subset of approximately 10% of all localized cases of prostate cancer diagnosed in San
Francisco Bay area from 1973 to 2000 was used to test the program. The test dataset has 2751
cases of prostate cancer. The following covariates were used in the multivariate analysis.

1. Grade, "g2", 1 = Low grade (baseline), 2 = High grade;

2. Radiotherapy (any type), "Rx", 0 = No, 1 = Yes;

3. Surgery, "s2", 1 = Local or no surgery, 2 = Radical prostatectomy or En Bloc resection;

4. Race, "Race", 1 = White, 2 = Black, 3 = Other

5. Age, "Age", continuous variable, years.

The following is a fragment of the data file in the text format required by the program.
Time
18 Number of covariates
DxY
Race
Registry
Grade
g3
g2
Stage
Rx
Surgery
s2
s3
Agegr
Age
AgeScans
TimeScans
dxyscans
AT
ATC
0 Weight 1 = present, 0 = No weight
0 0 2000 3 1 2 2 1 1 1 0 1 0 69 69 19 0 100 3.452 4
0 0 1997 1 1 2 2 1 1 0 0 1 0 59 59 9 0 97 2.84 3
0 0 2000 1 1 2 2 1 1 0 3 2 2 69 66 16 0 100 3.404 4
0 0 1994 1 1 1 1 1 1 0 1 1 1 79 79 29 0 94 6.729 7
0 0 2000 1 1 1 1 1 1 0 0 1 0 79 77 27 0 100 3.644 4
0 0 2000 1 1 1 1 1 1 0 0 1 0 74 74 24 0 100 3.5 4
0 0 2000 1 1 2 2 1 1 0 0 1 0 64 61 11 0 100 3.062 4
0 0 2000 1 1 2 2 1 1 0 0 1 0 84 83 33 0 100 4.627 5
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As the program is loaded, the user is brought to the input page (Figure 9). A double-click on the
file name box allows us to browse to the file to be analyzed. Read data button reads the data
in. At this stage, the software evaluates data for integrity, selects cases admissible to the analysis,
mines the data for groups defined by categorical covariates, and calculates descriptive statistics.
In the data input process the user will specify a classification of covariates into continuous or
categorical and the contrasts/model used to code categorical variables. Currently full factorial
and main effects are implemented. On the Covariates/Select groups page and the Curves page,

Survival function INoim Cumulative Hazard H Profile] Show opt l o P F Exit

Status:
Survival function Coy Cer PitCat Predictors IBaseline Input Model I Covariates / Select groups] Options I Tools Opt Stats]

1.0000 Data file: 6AT/rstaieSFLRlIO,.tx• Data entry log Clea

Categorical covariate #2. in-data 68 :RI
Group data Categorical covariate 1#3, in-data #10 :s2

0.9000- 1 Asis Points ..................................
Detecting groups in the data

I C o...... 50 Found new group #1 with categorical covariates:
g2=2
Rx=O
s2=1

0.8000- Found new group #2 with categorical covariates:
g2=1

Read data Rx=O
s2=1
Found new group 43 with categorical covariates:

0.7000- g2=1

Retrieve Model Model.txt

Save jDataEntryLog.t.t Save

0.6000.

Fit ] Tests ] LR Curves Profiles] Vadable Selection] Split Sample ]

H: obsae :epce ht
0.5000' . . . . .. . .. . , . . ,

0.00 50.00 100.00 150.00 200.00 6: deseved 6: eupected,

Xmax: 2400214 Ymin: 0.5

Figure 9: Data input page

the user can look at Kaplan-Meier and other descriptive curves corresponding to groups selected
from the factorial strata defined by categorical variables. Figure 10 shows output for two selected
groups corresponding to low grade tumors treated by surgery (No Radiotherapy) grouped by No
or Local Surgery vs. Radical Surgery. The hypothesis generated by this analysis is the benefit
of radical prostatectomy in localized prostate cancer vs. watchful waiting or local surgery. On
the Model and Variable Selection pages (Figure 11) the user specifies the model to be used in the
analysis (PHPH in the example) and variable selection procedure. The Fit page is used to specify
the method (QEM algorithm in the example) and to launch model fitting. Predictors page will
show final estimates and confidence intervals for the model parameters (Figure 12). Intermediate
output of the model fitting procedure and variable selection is shown in Figure 13. The same
figure shows the model restrictions block of the model specification. This page can be used to
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Survival function I Norm Cumulative Hazard H Prolie _ W otgr__SP__1 L__ __ E Exit_

Status:
Survival function Cop Cla rntCat Pediotors IBaseline IjInput Model Covariates I Select groups jOptions ITools Opt Stats

Covariates in the model Group coding
1.0000 Covariae i the da ategorica

- " DxY f- Modig2

Registry s2Select all Deselect all
0.9500- Grade G p C g s

g3 Grou g2 Ix 1 I
,1 750 1 0 1
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Yi 2 669 1 0 2

0Surgery
0.9000- gr 10,1 Continuous 3 746 1 1 1
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Figure 10: Descriptive slicing of the data
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Figure 11: Choosing the model and variable selection methods. Figure in the left part of the
worksheet shows observed and expected survival curves under the model.
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arbitrarily fix or pool any model parameters. This functionality can be used in an automatic mode

in variable selection procedures or manually, when we want to test a specific hypothesis. Model
comparisons for any two hierarchical models is done by the likelihood ratio test on page LR.

Survival function IN orm Cumulative Hazard H I profile Show opt Io jg Coy Forml Print Form EI t

Status:

Survival2 luntio Coy1~ ~ ~ hd Peitr Baseline I Input IModel jCovariates/ISelect groupsl Options I Tools 1 Opt S tatsl

1.0000 Effects relative to baseline Max Lkelihood f -i22"U. i Opt > lnt

3:3 Fixed. Pooled C1I. C I [I
102 Cg2[1J 1 0 .0.000 0.000 0.000 1.000 .

0.9500-
C1 g2[21 0 0 :1.262 0.954 1.570 5.0E-12 3

1 0 0.000 0.000 1.000 1

C1 Rx[IlI 1 0 .0000 0.00 0 000 0.075 1

C1s•2111 1 0 0000 0000 0.000 1.000 1

C1 s2[2] 0 0 -1.180 :-1.577 0.783 3.3E-09 0

0.8500- C2 g211 1 0 0.000 0.000 0.000 1.000 1

C2g2[2] 1 0 0.000 0.000 0.000 0.421 1

0.8000"

Fit jTests LR Curves Profiles Varrable Selection Split Sample

S........ " F ' eth od .. . .... ........ ....

0.7500 . . 1 0h-Mo ei I ProfilelQuasiEM
0.00 50.00 100.00 150.00 200.00 I 1  C Parametric ,veibull) Knots (Splines)S. . .. .... .... .. .. ....... ..... ........

Figure 12: Estimates of model parameters and confidence intervals.

Shown in table 3 the final model.
Summarizing the preliminary analysis, we observed an adverse long-term effect of high grade

on survival and no short-term effect, which indicates that grade follows a PH model. Radiotherapy
showed a short-term benefit, but no effect on the cure rate. Radical surgery was superior to no or
local surgery in improving the chance of cure.

10 Key Research Accomplishments

Simmarizing, the key research accomplishments in Year 2 are:

1. Recurrent solution of the system of equations for variance estimation

2. A study of the meaning of the imputation operator in the QEM algorithm

3. A study of diversity of responses reproduced by compound Nonlinear Transformation Models
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Figure 13: Interim output of the model fitting and variable selection algorithms (left). Model
restrictions window (right).
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Effect Parameter Point- Confidence p-Value
estimate interval

LT High vs. Low grade 1.262 (0.954,1.570) <0.001

LT No or Local vs. Radical Surgery -1.180 (-1.577,-0.783) <0.001

LT Baseline Log cure rate -1.162 (-1.528,-0.796) <0.001

ST Radiotherapy Yes vs. No -0.423 (-0.801,-0.045) 0.028

Table 3: Parameter estimates in the final PHPH model for the test dataset. "LT" = Long-term
effect, "ST" = Short-term effect. Negative Os correspond to lower risk.

4. A score test for long- and short-term effects

5. Computer implementation of point and interval estimation, hypothesis testing and variable
selection based on multivariate semiparametric nonlinear transformation models

6. Study of properties of estimators by simulation

7. Multivariate regression analysis of localized prostate cancer specific survival based on population
registry data.

11 Reportable Outcomes
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1. Tsodikov, A. (2004) Generalized self-consistency methods for cure models, In "Recent develop-
ments in censored data analysis" INSERM, Paris, 2004.

2. Bro~t, P., Tsodikov, A., De Rycke, Y., Moreau, T. (2004) Two-sample statistics for testing

the equality of survival functions against improper semi-parametric accelerated failure time
alternatives: An application to the analysis of a breast cancer clinical trial, Lifetime Data
Analysis, Vol. 10, 103-120.

3. Wendland, M.M., Tsodikov, A., Glenn, M.J., Gaffney, D.K. (2004) Time interval to the develop-
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11.2 Presentations

1. Tsodikov, A. (2004) Cure Models (invited), Workshop of the French National Institutes of
Health (INSERM).

2. Tsodikov, A. (2004) Modeling and estimation of cancer incidence and mortality under variable
dissemination of screening with application to prostate cancer (invited), International Biometric
Conference, Cairns, Australia July 2004.

3. Tsodikov, A. (2004) Population impact of PSA testing. The Tenth Annual Cancer Research
Symposium October 20-21, UCD Cancer Center.

12 Conclusions

In Year 2 we have completed methodology and software development for point and interval es-
timation and variable selection for compound Nonlinear Transformation Models. We have built
a number of candidate compound models for prostate cancer and verified their properties ana-
lytically and by simulations. Finally, we used the new software and methodology to apply these
models to a number of real and simulated test data sets.

In the last Year 3 of the project we will focus on large scale analysis of real prostate data on
cancer specific survival and biochemical recurrence. We are planning to evaluate utility of tree-
based models or alternative strategies of best model selection and analysis of treatment-covariate
interactions. A high-performance computer workstation will be purchased when computer inten-
sive methodology has been incorporated into the software to deal with computational challenges of
best model selection and analysis of interactions. This analysis has the goal of identifying subsets
of patients with indication for particular treatment.
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SUMMARY

1 Introduction

A large class of semiparametric survival models can be represented by the survival

function G(tI z) given covariates z treated as a function of an unspecified baseline

survival function F (or the corresponding cumulative hazard function H = - log F),

and a vector of regression coefficients /3. With such semiparametric models, we

present a unified approach for model building and construction of numerically ef-

ficient algorithms for maximum likelihood inference. The approach is based on a

generalization of the idea of self-consistency and is motivated by frailties and the

EM algorithm. Composition technique is developed for building hierarchical model

families compatible with the algorithms. An algorithm is provided to obtain the ex-

act profile information matrix for the parametric part of the model. The approach

is illustrated using cure models and real data.

2 Frailty models

2.1 PH mixture model

For a survival function G(t /3, z), where /3 are regression coefficients, and z are

covariates, consider a PH mixture model

G(t 1/3, z)= E { F(t)u(,3z) z}, (1)

where F is the baseline survival function, and U(/3, z) is a nonnegative random

variable whose distribution depends on covariates and regression coefficients. The

family (1) generates cure models if U has a point-mass at zero, which corresponds to

a fraction of immune individuals Pr{U = 0} > 0 showing zero risk. Binary variable

U has been a popular choice (Farewell, 1982; Kuk and Chen, 1992; Peng and Dear,
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2000; Sy and Taylor, 2000). Perhaps a more attractive class of cure models stems

from the compound Poisson structure for U Tsodikov et al. (2003), which we will

consider later as an example.

We can make the following important observa~tions about the class of PH mixture

models (1):

"* The survival function (1) is built by composition

Ga(t 10, z) = (-y o F) (t 1)3,z), (2)

where -y(x 1/3, z) is the probability generating function of U.

"* The moment generating function 7y(x I) is a distribution function in x with

the support on [0, 1]. If the distribution of U is specified parametrically, 'Y is

a parametric regression model on [0, 1].

"* The fact that the range and the support of -y are the same allows one to build

compositions of an arbitrary number of -ys. As we verify in the sequel, the

class of PH mixture models is closed with respect to such compositions.

These observations are used to generalize the PH mixture family into the Nonlinear

Transformation Models (NTM) family (Section 4). In doing so, we make use of the

following key property of the PH mixture model

Proposition 2.1 (Tsodikov, 2003)

Suppose, we have an observation (t, z, c) sampled from the PH mixture model under

independent censoring, where t is an observed survival time and c is a censoring

indicator (c = 0 if t is a censored survival time, and c =1 if t is a failure). Then,

under the PH mixture model (1),

• the conditional expectation of U, given the observed event (t, z, c) is given by

E f U(.)I t,.-, c} = (8 o F)(t .,c) = e [F(t)I. c],
where the function 0 is given by

0 C] + (x + .) (X(3)

where 3`(C)(x I) = &CY(x I ")/Oxc c = 0, 1,..., 0()(x /) - -(x

3



o The function E [x I ., c] is nondecreasing in x for any c = 0, 1.

2.2 Example

We are extending the example of Tsodikov (2002). Consider the frailty variable U

constructed as

U =z7(z)V,

where V - Poisson(O(z)). It is straightforward to verify that this leads us to the

following model

G(t11, z) = exp [-0(0, z) { 1 - F(t))(O3 z) (4)

The model (4) was proposed by Bro~t et al. (2001) in the context of two sample score

tests for long- and short-term covariate effects, see also (Tsodikov, 2002; Tsodikov

et al., 2003) for applications and more discussion. We use breast cancer data from

the SEER program (http://seer.cancer.gov/) to illustrate the frailty underpinnings

of model (4).

The nondecreasing character of the function E in (3) is quite natural. The longer

the subject stays event-free, the lower the subject's posterior risk, represented by

8.

2.3 Composition with PH mixture models

The idea to use compounding to build particular extended families of frailty models

is not new. For example, Aalen (1992) used a compound Poisson distribution to

extend a class of frailty models by Hougaard (1984).

Consider the following general compounding techniques for the PH mixture

model. If v is a nonnegative discrete random variable with the moment generating

function -y0(x) = E {xý }, and ýk are i.i.d. copies of another nonnegative random vari-

able (independent of v) with the the moment generating function -Y%(x)= E x•},

and U is a compound random variable given by

U = Zak, (5)
k=1
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then by the composition property of Laplace transform,

'y(x) = {xU} = (-yo o -)(x). (6)

A large variety of semiparametric mixture models can be derived from (6). When

-y0(x) corresponds to a continuous random variable, the composition 'yoeoY still leads

to a PH mixture model.

Proposition 2.2 Composition for mixture models.

Let 7yo and 7,% be some two mixture models 'y0(xl.) = E(xv I), '-y,(xt.) = E(xtI

where v and { are some independent nonnegative random variables. Let y = -o o 0

be the compound model. Then y is also a mixture model, meaning that there exists

a nonnegative random variable U such that -y(xl.) = E(xU I .).

Coming back to our example, we see that the model (4) is composed of 'Yo repre-

senting a probability generating function of Poisson distribution, and -Y. representing

a non-random real number rn.

3 Profile likelihood approach

The problem of Nonparametric Maximum Likelihood Estimation (NPMLE) with

the semiparametric model is to find estimates of regression coefficients /3, and an

NPMLE estimate of H such that they deliver the maximum of a suitably defined

likelihood function f = f(/3, H). We use a profile likelihood approach to maximize

f. The profile likelihood is defined as a supremum of the full likelihood taken over

the nonparametric part of the model

fp,(0) = max f(3, H). (7)

H

Assuming that we are able to find the global maximum of f with respect to H, given

/3, we may write the profile likelihood as an implicit function of /3

fp,(/3) = f f), H (13)1, (8)

where H(/3) is the solution of a self-consistency equation. Our algorithms will be

designed following a straightforward nested procedure:
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"* Maximize tp,(13) by a conventional nonlinear programming method (for exam-

ple, a directions set method).

"* For any 83 as demanded in the above maximization procedure, solve the self-

consistency equation.

4 Nonlinear Transformation Models

We considered semiparametric survival models of the form

G(t I -) = E { F(t)U() .} = (-y o F)(t H.

where -y is a probability generating function of a nonnegative random variable U.

We also noticed that -y(x I) is a distribution function in x E [0, 1] with the range

contained in the same interval of [0, 1]. This brings us to the following natural

generalization of the PH mixture family of models.

Definition 4.1 Let -I(x 1,3, z) be a parametrically specified distribution function

with the x-domain of [0, 1]. Let F(t) be a nonparametrically specified baseline sur-

vival function. A semiparametric regression survival model is called a Nonlinear

Transformation Model if its survival function can be represented in the form

G(t 13,z) = -y{F(t) I/,z} = (7 oF)(t 1/3, z). (9)

Functions -y will be called NTM-generating functions.

The class (9) was introduced in (Tsodikov, 2003), where universal estimation al-

gorithms for the NTM class were developed. The key requirement that ensures

monotonicity and convergence of the estimation algorithms of Section 5 is that of

nondecreasing e, where 0 is defined in (3). Now that we no longer use the concept

of frailty in the definition of NTM, O(F I ., c) becomes a surrogate of the posterior

risk such that its basic property of nondecreasing (9(x., c) is preserved.
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4.1 Composition

If -yo and -y,, are two different NT models with predictors 0, and r7, respectively, then

Y(xI') = (o 0o Y)(xI') (10)

is a new semiparametric model with two predictors 0 and 77. If 'yo(x') = x for some

value of 0 (usually for 0 = 1), then the model (10) includes models 7,9 and -Y. as

nested special cases. The fact that NTM-generating functions 'y(x I -) are all defined

on x E [0, 1] and have the range in the same interval allows us to compose as complex

a hierarchical model as needed. Moreover, operation of composition preserves the

key property of nondecreasing 0 observed in PH mixture model

Proposition 4.1 Composition.

Let -yo and -y,, be some two NTM-generating functions, each satisfying the assumption

of nondecreasing E, where 0 is given by (3), and let -y = y o 2/re be the compound

function (compositions are taken with respect to x). Let Oa be the 0-function (3)

corresponding to -y, a = 0, 77, and to the compound function -y, if a is blank. Then

(A)
e)(x I.c) = e),(x 0 ,) f (9o o -y,) (x I-, c) - c} + ce,(x I-, c), (11)

where c = 0, 1 and (e o -y) (x I, c) is understood as 8{fy(x I -)1., c}; and

(B) The function 0 (3) derived from the compound NTM-generating function -Y is

nondecreasing in x as required for monotonicity and convergence of the estimation

algorithms (See Section 5).

5 Estimation algorithm

Let ti, i = 1,... , n be a set of times, arranged in increasing order, tn+ 1 : 00-.

Associated with each ti is a set of subjects 7Di with covariates zij, j G Di who fail

at ti, and a similar set of subjects Ci with covariates zij, j G Ci who are censored

at ti. The observed event 8 ij for the subject ij is a triple (ti, zij, cij), where c is

a censoring indicator, c = 1 if failure, c = 0 if right censored. For any function
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A(t), let Ai = A(ti), AAi = IA(ti) - A(tj - 0)1. A step-wise function H can be

characterized by two vectors AH = (AH 1 , . . ., AH,,)T and t = (t1 , ... ,t)T.

The following method (QEM) is used to obtain the profile likelihood and solve

(7):
'AHm•+l) =D, (2

Dmj , Zij) (12)

where {F(k) } and {H(k) } are sequences of functions generated by the self-consistency

equation (12).

It can be shown that if 0 is nondecreasing, each update of H using the self-

consistency equation (12) strictly improves the likelihood, given/3. This guarantees

convergence of the sequence of likelihood values f {/3, H(k) } to the profile likelihood

of/3, and of the sequence {H(k)} to H*, the fixed point of (12), under fairly general

conditions.

Under a PH mixture model, the procedure (12) is an EM algorithm based on

imputation of the missing predictor U in the Nelson-Aalen-Breslow estimator by its

conditional expectation, given observed data, represented by 0(F /3, z, c). Under

an NT model, the procedure works as a Quasi-EM algorithm without the missing-

data interpretation.

6 Profile information matrix

As the number of parameters of a semiparametric model is potentially unlimited, ob-

taining the inverse of the full information matrix can be computationally prohibitive.

Therefore, we use the profile information matrix

r _O H* T OH* + OH* + OH* (13)
I00t = I3•(+ /3) IH- +(-) IH/3 +IHI3 =/3 (13)

where
I a2f(O3,H)Iab=- (OaabT  (/3,H%(I3))

for any two vectors a and b, and H* is the fixed point of the self-consistency equation.

Notice that I' has dimension d x d, with d = dim(/3), therefore only a small
m3/3

matrix needs to be inverted in order to get an estimator of the covariance matrix of
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regression coefficients.

The downside of (13) is that since H* (/3) is defined implicitly, so is the potentially

large Jacobian matrix &H*/1,93. Therefore, the Jacobian is generally unavailable in

a closed form. In the NTM case the problem reduces to solving a system of linear

equations (D + R)x = b, where x represents a column-vector of the Jacobian, D

is an n x n diagonal matrix with diagonal elements di $ 0, i = 1, ... , n, R = (Rkl)

is a n x n matrix, RkI = Zimax{kl} aj, aj, i = 1,... n are real numbers, and b be an

n-dimensional vector.

Proposition 6.1 gives the main result used to efficiently calculate OH*/aOf.

Proposition 6.1 Define the functions Pk : IR -+ IR, k = 1,..., n recursively in the

following way,

- bn a,

d, d,

k(Y bk aiy=+a , k = n-i,..., 1.
-dk i=k 1=k+l i=k

Let ýp IR -- R be the function given by ý(y) = E= 1 Pk(Y) and let

y ýO (0)
1 + ¢0 ()

The solution to the system of equations (D + R)x = b is the n-dimensional

vector x = (i(Y),... , )
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Abstract. This paper presents two-sample statistics suited for testing equality of survival functions against

improper semi-parametric accelerated failure time alternatives. These tests arc designed for comparing
either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as
partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests

can be very easily implemented using widely available software. A breast cancer clinical trial is presented as
an example to demonstrate the utility of the proposed tests.

Keywords: accelerated failure time models, cure rate model, improper model, semi-parametric model

1. Introduction

In recent years, there has been a renewed interest in methods for analyzing survival
data with long-term survivors fraction or a 'cure fraction' (for a review, see Maller
and Zhou, 1996). Most of these methods attempt to distinguish between the different
mechanisms by which a prognostic factor may act on the event's occurrence. Indeed,
a prognostic factor may affect either the probability of never experiencing the event
of interest (termed 'long-term effect' in the following text) or the time to occurrence
of the event (termed 'short-term effect' in the following text), or both.

Testing procedures for these effects were proposed in a recent paper where we
assumed proportional hazards for the short-term effect (Bro~t et al., 2001). In the
present paper, we extend this procedure to a non-proportional hazards behavior



104 BROET ET AL.

100

80

*"60 "'

40

20 adjuvant chemotherapy

....... neo-adjuvant chemotherapy

0II I I I I I I I I I

0 12 24 36 48 60 72 84 96 108 120 132 144

time (months)

Figure 1. Kaplan-Meier estimates of the recurrence-free interval according to the group of treatment.

of the short-term effect. This work was motivated by the analysis of a breast
cancer randomized trial comparing the distribution of the disease-free interval in
two treatments groups where Kaplan-Meier curves (Kaplan and Meier, 1958)
cross each other during the follow-up (see Figure 1). The two groups are defined
according to the different way of administration of the same chemotherapy which
is scheduled either to follow (adjuvant) or precede (primary or neo-adjuvant)
the local regional treatment. The question addressed in Section 5 is whether
primary chemotherapy, which shrinks the tumor before local treatment, modifies
the timing of the recurrence as compared to adjuvant chemotherapy, taking a
long-term recurrence-free rate into account. This situation was quite puzzling and
prompted us to derive test statistics suited for this case. As it will be seen, the
proposed tests provide interesting results that would have been overlooked if only
results from classical tests were considered.

In the literature, the most common approach for modeling failure-time data with a
cure fraction relies on the assumption that the overall distribution of the survival
times is a mixture of two components: one corresponding to the subjects who are not
susceptible ('cured' subjects) and the other to the subjects who are susceptible of
experiencing the event ('uncured' subjects). In this setting, most of the published
non-parametric procedures which are convenient for the two-sample comparison do
not allow testing for both effects (short-term and long-term) (Gray and Tsiatis, 1989;
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Laska and Meisner, 1992; Sposto et al. 1992; Lee, 1995). Others require complex
computations which are too heavy for a practical use in routine (Kuk and Chen,
1992; Taylor, 1995).

A different approach which overcomes these drawbacks relies on models that
define the cumulative hazard as a bounded increasing positive function in a para-
metric (Aalen, 1992; Cantor and Shuster, 1992; Yakovlev and Tsodikov, 1996) or
semi-parametric way (Tsodikov, 1998; Shen and Sinha, 2002; Ibrahim, 1999, 2001;
Bro~t et al., 2001). Such semi-parametric modeling was used in our previous work to
test for no short-term or no long-term effect against improper short-term propor-
tional hazard alternatives (Bro~t et al., 2001). In this paper, the restrictive propor-
tional hazard short-term effect assumption is relaxed and statistics are proposed for
improper short-term accelerated failure time alternatives.

In Section 2, a semi-parametric improper accelerated failure time model is
described. In Section 3, the proposed score statistics are derived from a Cox model
with a time-dependent covariate. In Section 4, we present the results of simulation
experiments. In Section 5, the clinical relevance of these tests is demonstrated by the
analysis of a breast cancer clinical trial with long-term follow-up. Section 6 contains
a discussion and guidelines for the use of the tests.

2. The Semi-Parametric Improper Accelerated Failure Time Model

Let i = 0, 1 denote the two groups to be compared, with ni subjects in group
i (n = no + nj). For each patient j, let the random variables Tj and Cj be the survival
and censoring times which are assumed to satisfy the condition of independent
censoring (Fleming and Harrington, 1991, pp. 26-27). We denote Xj = min(Tj, Cj)
the observed time of follow-up, bj = 1 {j=T} the indicator of death, Yj(t) = 11{,5j}

the indicator of being at risk at time t, and Zj the indicator variable of group 1. For
the subject j, the data consist of Xj, bj and Zj. The hazard function of Tj corre-
sponding to every subject j belonging to group i is denoted by: 2/(t) =f(t)/Si(t),
where fi(t) and Si(t) are the probability density function and the survival function,
respectively. The corresponding cumulative hazard function is denoted by
Ai(t) = - log[Si(t)]

A semi-parametric improper model is defined by the following general survival
function in group i:

Si(t) = exp{ -Oeflh[1 - A(t, flz/)]} 1

where A(t, #20) is a function decreasing with time from one to zero, which is similar
to a survival function, and where 0 is a positive parameter. The function Si(t) is
improper and its limiting value exp(-Oefli') is called the tail defect and represents the
probability of not experiencing the event of interest in group i. The cumulative
hazard Ai(t) = Oefi'd[l - A(t, f#2i)] is less than or equal to Oef'i.

The model (1) has two components: the first term containing fl, which quan-
tifies the long-term effect and the function A(t, /l2 i) which expresses the short-term
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effect. More precisely, if flt = 0, the two groups have the same cure fraction (no
long-term effect) and if /32 = 0, the model reduces to a proportional hazard
model. In this case, the relative risk is constant over time which implies no short-
term effect.

A particular case of (1) was considered in a previous work (Bro&t et al., 2001),
where we assumed a proportional hazard modeling of the short-term effect, so that in
the general formulation (1) given here, A (t, /1) = A (t)"i. Here, we consider another
particular case of (1) where a non-proportional hazards model is assumed for the
short-term effect by letting: A (t, #2) = exp [ - K(t)2•f] where K(t) is a positive
function increasing with time from zero to infinity. This is an obvious semi-para-
metric generalization of the case of two Weibull distributions differing in their shape
parameters. The resulting model

Si(t) = exp{I-Oefli1'[I - exp (-K( tye')j (2)

has the following property. In case of no long-term effect (fl1 = 0) and with a short-
term effect such as /32 < 0, the survival functions So(t) and S1 (t) cross before con-
verging to the same long-term survivor fraction.

3. Proposed Test Statistics

In this section, statistics are derived for testing (#Iy = 0) and/or (A2 = 0) in model (2).
The derivation is achieved by using a proportional hazards model with a
time-dependent covariate which approximates (2) about (A2 = 0) and which serves as
a basis for computing the desired statistic. They are easily computed as score sta-
tistics from the usual partial likelihood. The null hypotheses to be tested are:
HO: (P1 =fl2 = 0); HOO:( 2 = 0) and H000 : (fl = 0).

3.1. Method for Deriving the Test Statistics

Now, we define the following quantity: D(t, f2i) = -°A(t, #20 which refers to the
density function related to A(t, # 2i). The general model (1) can be written in terms of
the hazard functions 2o(t) and ,j (t):

log[&I (t)/2o(t)] = 13 + log[D(t, fl2)/D(t, 0)] (3)

Expanding log(D(t,ftC)) about f2 = 0 in (3) gives the following first-order appro-
ximation:

log[21 (t)/2o(t)] =f3i + P2w(t) (4)

with

~l'(t) - W2 log D(t, #2)1, 2=o)l
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Under the improper short-term accelerated failure time model (2), w(t) is
equal to

w(t) = 1 + log[- log A(t)] + [logA(t)] log[- log A(t)]

where

A (t) I Ao (t)1  (5)

In case of improper short-term proportional hazard model, w(t) = 1 + [log A(t)].
Substituting AO(t) and 0 in (5) by efficient estimators under the null hypothesis to
be tested provides estimates i',(t) of w1(t). These estimators are presented for each
null hypothesis H0, H 00 and H000 in the next subsection. Replacing w(t) by V,(t) in
(4), defines a time-dependent proportional hazards model with the internal time-
dependent covariate fi,(t) (Kabfleisch and Prentice, 1980). The proposed statistics
for testing (fl, =0) and/or (/A2 = 0) can be easily derived as the score statistics
from this time-dependent proportional hazards model through the corresponding
partial likelihood. It can be easily shown that the resulting score statistics for
testing the lack of short-term effect with or without a long-term effect are the same
as in model (2), which would not be the case for the likelihood ratio or Wald tests.
Moreover, the proposed score statistic for testing for no long-term effect can be
easily derived while similar derivation from model (2) would be at least burden-
some.

The resulting score statistics depend on the unknown parameters Ao(t) and 0.
Replacing Ao(t) and 0 by efficient estimators and applying the results of Pierce
(Pierce, 1982) to our setting as presented in an earlier work (Bro~t et al., 2001) for
improper short-term proportional hazards model allows us to obtain the asymptotic
distributions of the proposed statistics.

Score statistics for testing H0 and H00 are asymptotically distributed as chi-
squares with two degrees and one degree of freedom, respectively. Concerning
H000, it should be noted that the corresponding score statistic depends on an
estimate of /32 as seen in the next section. As the score statistic is derived from
model 3 (based on a first-order approximation) which is valid under /32 = 0, the
score statistic is approximately distributed as a X2 with one degree of freedom
for small values of fl2. This is not the case for the two other tests that do not
depend on /32 under their corresponding null hypothesis. For the validity of the
results it is required that the upper bound of the domain for which the survival
distribution of the survival time variable is greater than zero, be less than the
upper bound of the censoring distribution. In practice, this condition expresses
the fact that the susceptible subjects should experience the event within the
maximum length of follow-up. It should be stressed that the distribution of the
score statistics for testing H0 and H00 is a chi-square distribution no matter
whether the sufficient follow-up condition holds true or not. Indeed, the null
hypotheses H0 and H00 do not involve A(t) and are identical under the two
models.
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3.2. Score Tests

3.2.1. Testing the Lack of Short and Long-Term Effect

The components of the score vector for testing H0 fl, = /32 0 can be written as
follows:

-logL n 6j E Z --
at, - t E7n-1 Yk(t,)

0 logL nL jý(j L kQ)-Z
WHo,2-- Z-- I i -=, Yk(t,) J

In VýH,,,2, 1i,(t) is computed as indicated in Section 3.1 by using the left-continuous
version of the Nelson-Aalen estimator (Nelson, 1972; Aalen, 1978) for AO(t) and
using its value computed at the last observed failure time for 0. The corresponding
observed information matrix 1H0 under H0 is given in the Appendix.

Under HO, the statistic SHo = [JVHo,t, VHo,2]lo[VHo,IOHo,2] is asymptotically
distributed as a chi-square with two degrees of freedom.

3.2.2. Testing the Lack of Short-Term Effect

The components of the score vector for testing H0o: /32 = O,for any fl, can be written
as follows:

=a log L 0

a logL -0
VH=1 k

Olog2 L 6 ji'(t1 ) I Zj - ktjeZ~
VIO,- ft2  - .=,~ j Z•=I Yk~tj)e•,z•

In Vý11 ,2, /3j is the usual partial likelihood estimator of /31 under Hoo; iý(t) is com-
puted by using the left-continuous version of the Breslow's estimator [Breslow,
1972,1974] for Ao(t) under H0o and for 0 its value computed at the last observed
failure time. The Breslow's estimator for Ao(t) under H00 is given by

E n 
n

k/,_= 6k /, (tol

The corresponding observed information matrix IH. under Hoo is given in the
Appendix.

Under Hoo, the statistic SH., = [0, VoH,,0 2] I, [0, IVH0 ,2] is asymptotically distrib-
uted as a X2 with one degree of freedom.

3.2.3. Testing the Lack of Long-Term Effect

The components of the score vector for testing H/000: /# = 0, for any /32 can be
written as follows:
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a logL n j Zj -1 yk.(ti)efl2(0)ZkZ
VHOo - o J -(tj)e2'()Zkj=_ _ k

ao log L 0

where VH0,,() is obtained by using ii,(t) as given in Section 3.2.
A derivation of ýi,(t) and P12 could be achieved through an iterative proce-

dure. For computational simplicity, the first-step estimators are used in the
proposed score statistic. The procedure is as follows. At first step, ii,(t) is taken
under H0 where the cumulative baseline hazard is replaced by the Nelson-
Aalen estimator and /12 is taken as the partial likelihood estimator obtained in
the corresponding time-dependent model. At second step, /2 thus obtained, is
used to update ii(t) usingthe left-continuous version of a Breslow's type esti-
mator given by

Z~ ~ Yj(tAk)e[4fl2(1A)jl-

for Ao(t). As mentioned above, the proposed statistic is computed by using the first-
step estimator P12 together with ?',(t). This implies that VH.,2 does not vanish but is

taken to be null in the computation. The corresponding observed information matrix
1H, is given in the Appendix.

For small values of/#2, under H000, the statistic SHo [i•Hc,, 0]l 0 o [ .Ho,1, o]' is
approximately distributed as a Z2 with one degree of freedom.

4. Simulation Study

4.1. Method

A simulation study was performed to investigate the power properties of the pro-
posed tests in comparison with classical tests such as the Logrank test (LR) (Peto
and Peto, 1972) and the Peto-Prentice-Wilcoxon test (PPW) (Kabfleisch and Pre-
ntice, 1980). The proposed tests of H0 , H00 and H 000 are denoted SLT, ST and LT,
respectively. We also consider the test for no short- and no long-term effect (SLT-
PH) designed for improper short-term proportional hazard alternatives [Bro~t et al.,
2001]. In addition, the product-limit test (PL) which is a non-parametric test of no
difference in the cure fraction (Sposto, Sather and Baker, 1992) is also considered.

Data were generated to mimic a simple randomized clinical trial with two different
models: (A) improper short-term accelerated failure time model, (B) improper short-
term proportional hazard model. Survival times were generated according to model

(1) with A(t, fl 2i) = exp(-te2'2) and A(t, # 2i) = exp (-t_.k2') for the proportional
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hazards and accelerated failure time model, respectively. Censoring times were
independently generated from a uniform distribution over [0, u]. It is worth noting
that in the uniform censoring case, a susceptible subject may not experience the event
of interest within the follow-up time u. For each set of parameter values u can be
easily computed so as to ensure a given percentage of censoring. The percentage of
censoring refers only to the percentage of censored observations without the cure
fraction exp (-0). The number of subjects per group was chosen to be 100. The
following configurations were considered: exp(-0)= 0.3,0.5,0.7; 0%, 20% and
40% censoring; eA = 2/3, 1, 3/2 and efl2 = 0.5, 1,2. For 20% censoring as specified
above, the actual rate of censoring was 44%, 60% and 76% for each plateau value.
For 40% censoring, the actual rate of censoring was 58%, 70% and 82% for each
plateau value. For each configuration, 1,000 replications were performed and the
levels and powers of all tests were estimated at the nominal level of 0.05.

4.2. Results

Tables l(a-c) display the results for model (A) whereas Tables 2(a-c) display those
for model (B).

Table l(a) shows the results obtained in the uncensored case. Except for the LT
test, the estimated level of each test under its proper null hypothesis is within the
binomial range [0.036; 0.064]. In the presence of a short-term effect, the observed
levels for the LT test increase up to 10%. The test of no short-term and long-term
effect (SLT) shows a strongly increased power relative to LR, PPW and SLT-PH in
the presence of a short-term effect. The power gains are striking for no, or small
differences in the long-term effects. As compared to LR, the SLT test is in some cases
10 times more powerful. However, it is well known that the LR test is not suited for
such situations where survival curves cross. In case of no difference in short-term
effects, the power of this latter test is slightly decreased relative to that of the LR.
In any case it is less than 12% lower than that of the LR test. Power values of the ST
test are very close to the SLT. Regarding the long-term effect, the PL test is more
powerful than LT and LR. Power of these two latter tests is quite close.

Table l(b) shows the results obtained with a 20% censoring rate. The observed
levels of the SLT and ST tests do not exceed the binomial bounds. This is not the
case for LT and PL where the observed level is increased up to 9% in case a short-
term effect exists. Concerning the power, it appears that the trends observed in the
uncensored case remain almost unchanged. Power gains for the ST and SLT relative
to LR are lower than in the uncensored case, but still remain impressive as compared
to LR. For the LT, the magnitude of the power values is lower than in the uncen-
sored case and is always under those of the PL test.

The results obtained at a 40% censoring rate are shown in table 1(c). Regarding
the SLT and ST tests, empirical significance levels appear to be close to the nominal
level, and power gains are less pronounced than at lower censoring rates. However,
with a short-term effect, the magnitude of the power gain remains high. Concerning
the LT test, the observed levels are appreciably higher than the nominal level in the
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Table 1. Simulation results for the improper short-term accelerated failure time model with (a) no

censoring, (b) 20% censoring and (c) 40% censoring.

e-
0  

e'• 2 e LR PPW SLT-PH SLT ST LT PL

(a) No censoring
0.5 0.482 0.219 0.362 0.993 0.995 0.478 0.598

0.67 1.0 0.648 0.613 0.532 0.530 0.062 0.649 0.593
2.0 0.757 0.873 0.657 0.999 0.992 0.787 0.575

0.5 0.083 0.268 0.088 0.992 0.999 0.089 0.052
30% 1.00 1.0 0.043 0.046 0.048 0.048 0.056 0.040 0.046

2.0 0.096 0.284 0.097 0.993 0.998 0.092 0.057

0.5 0.901 0.988 0.857 1.000 1.000 0.858 0.626
1.50 1.0 0.710 0.650 0.615 0.601 0.041 0.711 0.626

2.0 0.411 0.099 0.407 1.000 1.000 0.557 0.657

0.5 0.409 0.338 0.347 0.960 0.950 0.359 0.476

0.67 1.0 0.466 0.445 0.379 0.366 0.056 0.470 0.472

2.0 0.499 0.596 0.376 0.973 0.949 0.625 0.436

0.5 0.052 0.070 0.050 0.957 0.978 0.073 0.049
50% 1.00 1.0 0.036 0.039 0.034 0.051 0.054 0.034 0.044

2.0 0.049 0.088 0.054 0.950 0.972 0.094 0.048

0.5 0.661 0.791 0.562 0.998 0.989 0.730 0.538
1.50 1.0 0.575 0.563 0.471 0.476 0.063 0.579 0.569

2.0 0.474 0.268 0.367 0.994 0.994 0.452 0.586

0.5 0.295 0.265 0.230 0.754 0.751 0.240 0.309

0.67 1.0 0.314 0.308 0.231 0.241 0.057 0.321 0.317
2.0 0.320 0.340 0.230 0.771 0.721 0.468 0.302

0.5 0.055 0.056 0.044 0.719 0.831 0.093 0.048
70% 1.00 1.0 0.047 0.047 0.040 0.047 0.048 0.047 0.046

2.0 0.049 0.053 0.048 0.748 0.839 0.081 0.051

0.5 0.440 0.479 0.348 0.925 0.884 0.571 0.401
1.50 1.0 0.405 0.405 0.307 0.295 0.039 0.405 0.391

2.0 0.398 0.335 0.299 0.913 0.906 0.332 0.435

(b) 20% censoring

0.5 0.518 0.234 0.683 0.980 0.984 0.530 0.615
0.67 1.0 0.570 0.548 0.464 0.467 0.057 0.574 0.460

2.0 0.722 0.869 0.663 0.997 0.990 0.737 0.499

0.5 0.079 0.322 0.683 0.972 0.979 0.084 0.106

30% 1.00 1.0 0.053 0.051 0.063 0.055 0.057 0.054 0.058
2.0 0.102 0.297 0.371 0.981 0.991 0.075 0.053

0.5 0.908 0.988 0.986 1.000 0.986 0.845 0.204

1.50 1.0 0.569 0.523 0.479 0.422 0.051 0.563 0.348
2.0 0.184 0.039 0.730 0.957 0.991 0.451 0.492

0.5 0.438 0.305 0.434 0.905 0.902 0.377 0.475

0.67 1.0 0.424 0.416 0.348 0.342 0.049 0.432 0.429
2.0 0.500 0.574 0.393 0.949 0.904 0.618 0.407

0.5 0.049 0.095 0.415 0.850 0.927 0.082 0.087
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Table 1. Continued.

e-0 e0 el?2 LR PPW SLT-PH SLT ST LT PL

50% 1.00 1.0 0.048 0.049 0.063 0.056 0.063 0.049 0.049

2.0 0.060 0.086 0.142 0.860 0.933 0.079 0.061

0.5 0.680 0.820 0.863 0.973 0.908 0.703 0.162
1.50 1.0 0.405 0.382 0.315 0.305 0.059 0.400 0.298

2.0 0.298 0.128 0.577 0.890 0.948 0.398 0.475

0.5 0.326 0.293 0.261 0.693 0.662 0.269 0.311
0.67 1.0 0.275 0.274 0.217 0.202 0.047 0.287 0.279

2.0 0.287 0.318 0.211 0.716 0.661 0.421 0.275

0.5 0.045 0.038 0.192 0.544 0.674 0.055 0.071

70% 1.00 1.0 0.053 0.057 0.055 0.057 0.052 0.057 0.057
2.0 0.044 0.055 0.096 0.560 0.658 0.071 0.046

0.5 0.342 0.414 0.560 0.767 0.649 0.436 0.138
1.50 1.0 0.274 0.279 0.214 0.213 0.050 0.286 0.228

2.0 0.244 0.183 0.375 0.632 0.734 0.276 0.342

(e) 40% censoring
0.5 0.198 0.084 0.707 0.892 0.954 0.270 0.474

0.67 1.0 0.474 0.457 0.393 0.379 0.047 0.475 0.318
2.0 0.704 0.869 0.868 0.987 0.940 0.610 0.158

0.5 0.303 0.535 0.790 0.948 0.950 0.283 0.056

30% 1.00 1.0 0.050 0.054 0.061 0.046 0.050 0.054 0.050
2.0 0.197 0.447 0.727 0.948 0.966 0.110 0.069

0.5 0.976 0.992 0.991 1.000 0.911 0.947 0,407
1.50 1.0 0.500 0.473 0.394 0.379 0.055 0.485 0.295

2.0 0.052 0.097 0.719 0.911 0.984 0.185 0.322

0.5 0.243 0.160 0.557 0.747 0.839 0.249 0.434
0.67 1.0 0.327 0.316 0.239 0.236 0.042 0.328 0.246

2.0 0.425 0.553 0.555 0.880 0.816 0.466 0.173

0.5 0.093 0.150 0.514 0.772 0.825 0.132 0.044
50% 1.00 1.0 0.054 0.059 0.052 0.047 0.050 0.061 0.053

2.0 0.083 0.144 0.475 0.770 0.843 0.083 0.081

0.5 0.807 0.890 0.923 0.973 0.749 0.817 0.277
1.50 1.0 0.341 0.328 0.259 0.257 0.056 0.336 0.230

2.0 0.091 0.057 0.552 0.734 0.896 0.207 0.354

0.5 0.229 0.187 0.378 0.503 0.582 0.229 0.307
0.67 1.0 0.213 0.217 0.161 0.172 0.054 0.224 0.189

2.0 0.213 0.243 0.230 0.538 0.473 0.282 0.130

0.5 0.046 0.056 0.287 0.443 0.574 0.072 0.054
70% 1.00 1.0 0.040 0.040 0.047 0.037 0.044 0.043 0.044

2.0 0.050 0.058 0.231 0.468 0.596 0.069 0.062

0.5 0.504 0.557 0.643 0.773 0.468 0.563 0.191

1.50 1.0 0.229 0.228 0.150 0.157 0.045 0.236 0.172

2.0 0.120 0.085 0.382 0.472 0.661 0.193 0.293

Configurations presented below correspond to different short-term effect (efa), long-term effect (etl) and
plateau values (e-0). The total number of subjects is 200.
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Table 2. Simulation results for the improper short-term proportional hazard model with (a) no censoring,
(b) 20% censoring and (c) 40% censoring.

e-() efl, efý-
1  LR PPW SLT-PH SLT ST LT PL

(a) No censoring
0.5 0.887 0.963 0.989 0.823 0.888 0.882 0.601

0.67 1.0 0.609 0.591 0.517 0.519 0.048 0.611 0.579
2.0 0.303 0.111 0.880 0.220 0.895 0.311 0.568

0.5 0.207 0.450 0.870 0.186 0.894 0.196 0.046
30% 1.00 1.0 0.050 0.048 0.046 0.050 0.041 0.051 0.061

2.0 0.209 0.487 0.896 0.193 0.916 0.186 0.039

0.5 0.208 0.057 0.889 0.150 0.909 0.225 0.600

1.50 1.0 0.711 0.674 0.600 0.592 0.038 0.692 0.609
2.0 0.972 0.994 0.997 0.956 0.873 0.963 0.646

0.5 0.624 0.758 0.922 0.503 0.812 0.624 0.463
0.67 1.0 0.480 0.475 0.393 0.381 0.047 0.480 0.487

2.0 0.310 0.188 0.800 0.221 0.810 0.314 0.444

0.5 0.084 0.192 0.783 0.062 0.854 0.084 0.046

50% 1.00 1.0 0.048 0.048 0.043 0.056 0.052 0.048 0.051
2.0 0.087 0.188 0.784 0.065 0.853 0.085 0.051

0.5 0.310 0.146 0.878 0.224 0.882 0.314 0.573
1.50 1.0 0.579 0.574 0.490 0.488 0.061 0.581 0.569

2.0 0.847 0.935 0.978 0.739 0.866 0.840 0.567

0.5 0.353 0.418 0.686 0.253 0.606 0.354 0.293
0.67 1.0 0.322 0.327 0.252 0.239 0.047 0.328 0.317

2.0 0.257 0.200 0.570 0.176 0.543 0.255 0.311

0.5 0.053 0.073 0.540 0.043 0.660 0.053 0.054

70% 1.00 1.0 0.047 0.047 0.047 0.051 0.042 0.048 0.053
2.0 0.066 0.086 0.562 0.047 0.681 0.067 0.059

0.5 0.291 0.206 0.763 0.216 0.713 0.292 0.402

1.50 1.0 0.405 0.394 0.300 0.305 0.044 0.409 0.398
2.0 0.505 0.602 0.841 0.381 0.739 0.507 0.387

(b) 20% censoring

0.5 0.928 0.971 0.980 0.909 0.686 0.920 0.496

0.67 1.0 0.559 0.534 0.456 0.447 0.049 0.555 0.476
2.0 0.146 0.055 0.677 0.153 0.720 0.161 0.463

0.5 0.404 0.561 0.623 0.476 0.462 0.358 0.069
30% 1.00 1.0 0.042 0.038 0.044 0.040 0.053 0.035 0.046

2.0 0.438 0.584 0.636 0.482 0.461 0.391 0.058

0.5 0.039 0.066 0.207 0.084 0.286 0.041 0.106
1.50 1.0 0.563 0.531 0.466 0.429 0.049 0,546 0.314

2.0 0.989 0.994 0.987 0.986 0.238 0.981 0.590

0.5 0.699 0.787 0.891 0.615 0.677 0.706 0.407
0.67 1.0 0.421 0.403 0.319 0.315 0.050 0.423 0.398

2.0 0.207 0.130 0.652 0.165 0.665 0.207 0.416
0.5 0.236 0.316 0.458 0.283 0.420 0.232 0.055
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Table 2. Continued.

e-° efII el' LR PPW SLT-PH SLT ST LT PL

50% 1.00 1.0 0.049 0.050 0.050 0.045 0.050 0.047 0.052
2.0 0.205 0.288 0.467 0.249 0.447 0.205 0.057

0.5 0.058 0.057 0.188 0.079 0.235 0.066 0.125

1.50 1.0 0.429 0.416 0.343 0.329 0.051 0.431 0.297
2.0 0.932 0.946 0.916 0.909 0.234 0.918 0.557

0.5 0.405 0.460 0.654 0.317 0.529 0.421 0.286
0.67 1.0 0.296 0.290 0.225 0.226 0.043 0.304 0.293

2.0 0.213 0.179 0.470 0.170 0.458 0.207 0.296

0.5 0.106 0.133 0.289 0.138 0.326 0.115 0.050
70% 1.00 1.0 0.052 0.052 0.050 0.045 0.044 0.056 0.054

2.0 0.111 0.138 0.299 0.146 0.321 0.126 0.067

0.5 0.054 0.048 0.152 0.086 0.183 0.059 0.095
1.50 1.0 0.289 0.286 0.213 0.217 0.042 0.296 0.229

2.0 0.738 0.768 0.698 0.673 0.185 0.740 0.430

(c) 40% censoring

0.5 0.959 0.971 0.946 0.943 0.221 0.948 0.587
0.67 1.0 0.448 0.421 0.345 0.335 0.036 0.456 0.292

2.0 0.052 0.049 0.169 0.079 0.222 0.051 0.079

0.5 0.573 0.624 0.527 0.507 0.143 0.538 0.209

30% 1.00 1.0 0.049 0.050 0.060 0.048 0.051 0.055 0.053
2.0 0.559 0.618 0.523 0.525 0.141 0.527 0.184

0.5 0.083 0.085 0.100 0.087 0.094 0.070 0.043
1.50 1.0 0.447 0.427 0.359 0.338 0.050 0.440 0.244

2.0 0.990 0.988 0.976 0.972 0.086 0.976 0.700

0.5 0.819 0.847 0.786 0.763 0.203 0.815 0.463
0.67 1.0 0.326 0.328 0.257 0.246 0.053 0.332 0.247

2.0 0.077 0.063 0.177 0.073 0.219 0.083 0.125

0.5 0.364 0.408 0.345 0.342 0.142 0.351 0.143
50% 1.00 1.0 0.047 0.039 0.039 0.034 0.044 0.050 0.036

2.0 0.373 0.410 0.368 0.342 0.143 0.358 0.147

0.5 0.057 0.064 0.097 0.067 0.108 0.052 0.051
1.50 1.0 0.330 0.319 0.269 0.254 0.060 0.329 0.231

2.0 0.919 0.928 0.883 0.873 0.097 0.911 0.632

0.5 0.547 0.572 0.505 0.469 0.172 0.555 0.333
0.67 1.0 0.213 0.212 0.171 0.169 0.042 0.225 0.201

2.0 0.058 0.049 0.125 0.076 0.184 0.063 0.122

0.5 0.178 0.208 0.219 0.193 0.146 0.193 0.114

70% 1.00 1.0 0.062 0.058 0.042 0.051 0.044 0.066 0.055
2.0 0.225 0.239 0.208 0.185 0.127 0.231 0.111

0.5 0.064 0.063 0.071 0.064 0.074 0.064 0.059
1.50 1.0 0.206 0.211 0.143 0.164 0.056 0.206 0.158

2.0 0.669 0.679 0.591 0.596 0.079 0.666 0.459

Configurations presented below correspond to different short-term effect (e'-), long-term effect (e'ý) and
plateau values (e-'). The total number of subjects is 200.
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presence of a short-term effect. For the PL test, the observed type I error rate is
slightly increased up to 8% in case of an existing non-null short-term effect and
power gains are less than those observed at a lower censoring rates.

Tables 2(a-c), show the results for model (B). Estimated type I error was very
close to the nominal significance level of 0.05 for the SLT and the ST test in every
configuration. This is not the case for the LT test which always yields higher
observed levels than the nominal level with values markedly increased in some
situations. To a lesser extent, a similar trend is observed for the PL test for which
observed level is increased up to 18% in case of an existing non-null short-term
effect and a high censoring rate. It is worth noting that in this short-term propor-
tional hazards situation, the loss of power of the SLT test remains small as com-
pared to the LR.

Concerning the type I error of the proposed tests, it should be stressed that the null
hypotheses H0 and H00 involve neither 0 nor iý(t). As a result, the SLT and ST tests
maintain a correct type I error which is not the case for the LT test under the
corresponding null hypothesis when /2 is not null and the model is not the correct
one. In the case of no short-term effect where the estimated level is close to the
nominal one it appears that the power of the LT test is not dramatically decreasing
as compared to the other tests even if in this case the uniform censoring is likely to
hinder the long-term effect.

We performed additional simulations with small sample size (not shown here) and,
as expected, it leads to a decrease in power which is more pronounced with a high
censoring rate.

5. Application

In this section, we consider a clinical trial on breast cancer disease.

5.1. Primary Chemotherapy Trial

The aim of the present analysis was to investigate short-term and long-term effects of
primary chemotherapy on disease recurrence by the proposed tests in a mature trial
with more than ten years of follow- up. The so-called 'S6-trial' (Scholl et al., 1994)
was conducted to assess whether primary chemotherapy improved survival, as
compared to the same chemotherapy scheduled to follow the local regional treat-
ment (adjuvant chemotherapy). Premenopausal breast cancer patients were included
between October 1986 and June 1990, and randomized to receive either primary or
adjuvant chemotherapy. The criteria for inclusion were as follows: non-metastatic
operable breast tumors, largest tumor diameter between 3 and 7 cm, axillary lymph
nodes not involved clinically, or involved but not adherent, no prior cancer, no
serious concomitant illness. Bilateral, inflammatory or locally advanced breast
cancers were not eligible. Two hundred breast cancer patients received primary
chemotherapy and 190 adjuvant chemotherapy. Chemotherapy was started either
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after completion of the initial assessment (primary) or within 2 weeks of ending the
local regional therapy (adjuvant). It consisted of four monthly cycles of intravenous
cyclophosphamide, doxorubicin and 5-fluorouracil. Following random assignment
to primary or adjuvant chemotherapy, patients were reviewed every 3 months for a
year, then every 6 months during the first 5 years following the treatment and at
least annually thereafter.

In what follows, we focus on the recurrence-free interval and not on the overall
survival which was considered in a previous paper (Scholl et al., 1994). The
recurrence-free interval is defined as the time from randomization until progression
on the first observation of tumor recurrence (local, regional, distant).

5.2. Results

The median follow-up was 105 months. The 5-year recurrence-free interval rates
were 60% [53-67] for patients treated with primary chemotherapy and 55% [48-63]
for those treated with adjuvant chemotherapy. The 10-year survival rates were 40%
[32-51] for patients treated with primary chemotherapy and 42% [35-50] for those
treated with adjuvant chemotherapy. At the end of follow-up and for the 390
patients under study, 208 patients experienced a recurrence of the disease.

Figure 1 displays the Kaplan-Meier estimates of the recurrence-free interval by the
treatment group. It shows a plateau value (i.e. long-term fraction) in the survival
curves after 10 years, which is not surprising since most of the local and distant
recurrences occur in the first decade (Bland and Copeland, 1998). Thus, an improper
model appears well suited for these data.

Figure 2 displays the estimated survival function Ai(t). The empirical estimate for
Ai(t) = [1 - (Ai(t)/Oi)] in each group is obtained by replacing Ai(t) and Oi by the
Nelson-Aalen estimator and its value at the last observed failure time, respectively.
This plot provides an informal assessment of the proportional hazards hypothesis for
the short-term effect. It appears that the two survival functions cross, clearly indi-
cating a non-proportional short-term effect.

In what follows, we present the results of the proposed statistics together with
those obtained with the classical logrank statistic and the Peto-Prentice-Wilcoxon.
We also provide the results of the SLT-PH test.

When testing for differences in recurrence-free interval, the logrank test
(xZ <0.0001,P=0.99) the PPW (Z2 =0.10,P=0.78) and the SLT-PH tests

(X2 = 0.59, P = 0.75) are not significant. When testing for an overall effect with an
accelerated failure time short-term effect, the SLT test is close to the significance

(Z2 = 4.14, P = 0.13). When testing for a short-term effect, the ST test is significant

(xZ2 = 4.13, P = 0.04). No short-term effect was detected when using the LT test

(XI < 0.01, P = 0.94) or the plateau test (PL: X2 = 0.08, P = 0.77). These latter
results agree with figure 2 which indicates a non-constant short-term effect. From
these results, the disease's recurrences have been significantly delayed by primary
chemotherapy but without a benefit on long-term recurrence rate as compared to
classical adjuvant chemotherapy.
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Figure 2. Estimated survival function A(t) according to the group of treatment.

6. Discussion

Survival data with long-term survivors requires extension of existing test statistics for
analyzing short and long-term effects of a prognostic factor. In this paper, we pro-
pose new score tests well suited for different types of departures from equality of
survival distributions with long-term survivors. These tests are related to improper
short-term accelerated failure time alternatives and are obtained as score statistics
from a time-dependent Cox model.

An interesting feature of these tests is that they are simple to use since they can be
very easily obtained from standard Cox model procedures implemented in most
statistical software packages. The test of no long-term effect should be particularized

since its limiting distribution is obtained in the presence of a negligible short-term
effect. This drawback would not exist if a test was derived from the original model,
but this does not seem to be computationally realistic in usual practice. It must be
kept in mind that using this test also requires that the maximum value of the
cumulative hazard be estimated consistently. The theoretical condition underlying
this assumption is that sufficient number of patients should be followed up to a time
after which the risk of developing the event of interest is negligible. Such drawbacks
do not concern the two other tests.
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Simulation results show that SLT and ST tests maintain a correct type I error in
case of high censoring rate and a misspecified model. In contrast, the proposed LT
test is very sensitive to model misspecification and high censoring rates in the pres-
ence of a short-term effect. Regarding the power, the SLT and ST show interesting
power performances for assessing a short-term effect with or without a long-term
effect as compared to classical tests such as the logrank test or the Peto-Prentice-
Wilcoxon test. Power gains decrease with censoring which could be explained by the
fact that the cumulative hazard is not consistently estimated under the alternative
hypothesis. Indeed, the presence of uniform censoring yields to a violation of the
sufficient follow-up condition even if the model is correctly specified under the
alternative hypothesis.

In practice, SLT and ST tests could be recommended for routine use when a non-
constant short-term effect is expected. This could be the case when comparing
treatments that modify the speed of progression of the disease in a population
where a long-term survivor fraction is commonly encountered. As seen from the
simulation results, it seems that with moderate censoring the product-limit test is a
more reasonable alternative to the long-term effect tests when a short-term effect is
expected.

The proposed score tests are particularly well suited to the study presented in this
article since a large proportion of the patients will never recur from the disease and a
long-term follow-up is provided. According to our analysis, the recurrence of the
disease appeared to have been significantly delayed by primary chemotherapy but
without a benefit on long-term recurrence rate as compared to the post-operative
chemotherapy. It is tempting to speculate that early and effective targeting of active
micrometastasic disease may have delayed the occurrence of disease recurrence.
Based on these results, we should emphasize that using the proposed score tests
provide some interesting findings for primary chemotherapy that would have been
overlooked by only considering results from the classical logrank test. Moreover, we
are able to attribute this difference to the short-term effect. Finally, our approach
offers a new insight on the different aspects of treatment effects and may be rec-
ommended for widespread use in long-term survival studies.

In addition, it should be noted that these tests can obviously be extended for taking
into account other factors by using a stratified time-dependent Cox model. Further
works are ongoing to extend this family for taking into account other complex time-
varying short-term patterns.

In conclusion, the proposed tests, which are very simple to use, seem particularly
appealing when testing time-related effects of new markers or therapies in censored
data with long-term survivors.
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Appendix: Partial Second Derivatives Based Upon the Working Model

For the following derivation it is convenient to introduce the notations

S(°)[Ail, fl2, "'(t), t] = -I: Yk (t)el' Az exp{Zk/32[,'(t)]}

A()[i, fl2, 1,(t), t] = n E Zk YA (t)eAlz1 exp{Z0.f2 [,i,(t)]

1n k 9S(2) [/31, /32, ,•'(t), t] = nZ Z•. Yk (t)e•' z•exp{Zk/32 [ui',(t)] }

It follows that the partial second derivatives are as follows

a 2 1logL-= j11 [S(°) [V312• t)t] S(2) [Pl '#s2 [, 1 , (ti) , t ,]

WIWI j- I S(0)[fRt #,pý'* til S0 #1#,1 0 i0 2 logL n 2 tI S(1)[flh #l2, / (tj ),)t] 12 S(2)[#31 , #2 ,i'(ti),tj] }a# 20#12 j=l ý J[li,(A), lf,!,", tilJ S(O) [#lfP2,w 1 )t]

a2 log L n, ,.] ,Ji f SO) [# 1, # 2 ,"(tj), tj] 2- S(2) [#l1 , # 2 , i(tJ), 't fEf2Ol j bl [, •j S( ) )[fll , P12, IW ,t) til S(°) [# 1, fl2, )ý (ti) , il]

The elements of the information matrix are computed under the null hypothesis Ho
by using i',(t) as given in Section 3.1 and replacing S(1)(fl1 ,[32,ti,(t),t) by
S(1) (0, 0, liý(t), t).

Under the null hypothesis H 00, the corresponding elements are computed by using
i',(t) as given in Section 3.1 and replacing S(O (A,, "'(t), t) by S(0)(3l, 0, i'(t), t).

Finally, under the null hypothesis H 000, the corresponding elements are computed
by using it,(t) as given in Section 3.1 and replacing S(')(fl1,f/l2,(t),t) byS(') (0, k t).,
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Time Interval to the Development of Breast
Carcinoma after Treatment for Hodgkin Disease

Merideth M. M. Wendland, M.D.
1  BACKGROUND. Women with Hodgkin disease (HD) who received mantle irradiation

Alexander Tsodikov, Ph.DO
2  had an increased risk of developing breast carcinoma. The authors examined the

Martha J. Glenn, M.D.
3  influence of radiotherapy on the time interval to the development of breast

David K. Gaffney, M.D., Ph.D.1 carcinoma.
METHODS. Using population, cancer incidence, and survival data from the Surveil-

Department of Radiation Oncology, The Hunts- lance, Epidemiology, and End Results (SEER) registries, standardized incidence
man Cancer Institute and the University of Utah, ratios (SIR) were calculated and Kaplan-Meier curves were constructed to estimate
Salt Lake City, Utah. breast carcinoma-free survival in women with HD treated with and without radio-

2 Department of Epidemiology and Preventive therapy. The log-rank test was utilized and multivariate proportional hazard re-

Medicine, Division of Biostatistics, University of gression analysis was performed. Multivariate analysis was also performed using
California at Davis, Davis, California. the PHPH regression model.

3 Department of Medicine, The Huntsman Cancer RESULTS. In 9 SEER registries, 8036 females were identified who were diagnosed
Institute and the University of Utah, Salt Lake City, with HD between 1973 and 1999. Of these women, 183 (2.3%) were subsequently
Utah. diagnosed with breast carcinoma. The use of radiotherapy in the treatment of HD

resulted in an increased risk of development of breast carcinoma (SIR = 1.90, P

< 0.01). The log-rank test and proportional hazard regression model failed to

detect a difference (P = 0.79) in breast carcinoma-free survival for women treated

with and without radiotherapy. The PHPH regression model revealed that the use

of radiotherapy had an adverse effect on long-term survival (relative risk [RR] =

1.84, P = 0.01), but was associated with a short-term survival advantage (RR = 0.45,

P = 0.01).
CONCLUSIONS. Use of the PHPH model indicated that the use of radiotherapy in the

treatment of HD resulted in an increased long-term risk for the subsequent

development of breast carcinoma, but conferred a short-term reduction. Cancer
2004;101:1275-82. © 2004 American Cancer Society.

KEYWORDS: secondary malignancy, breast carcinoma, Hodgkin disease, radiother-
apy.

T hrough the use of comprehensive radiotherapy and combination

chemotherapy regimens, the prognosis for patients with Hodgkin
disease (HD) has improved dramatically in the last several decades.
Radiotherapy and alkylating chemotherapy agents are themselves
carcinogenic and, unfortunately, the dramatic gains in survival for
patients with HD have been accompanied by a significant increase in

the risk of secondary malignancies.'- 22 The leading cause of death

Address for reprints: David K. Gaffney, M.D., Ph.D., among 15-year survivors of HD is second cancers. 23-25 As the number
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Utah, 50 North Medical Drive, Room AB25, Salt of the modalities used to treat HD become progressively more im-
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david.k.gaffney@hci.utah.edu An increased incidence of both hematologic and solid tumors has
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female survivors of HD and the risk varies with several resentation of the population history on the age-by-
patient and treatment-related factors.5' 8' 10

,1
3 '15,1 6' 18-20  year plane). The number of person-years was deter-

Recently, several groups have evaluated not only the mined within each cell that intersected with the line
incidence of breast carcinoma in female survivors of segment. To calculate the expected number of breast
HD, but also the relation to the age at treatment, site carcinoma cases for the patients with HD, the number
treated, gender of the patient, attained age, radiother- of person-years was multiplied by the incidence in the
apy dose, ovarian function, alkylator dose, and other cell and summed over all cells that intersected the
treatment modalities used.5 '7 -4 '1 6 2 2 ,2 6 The current individual follow-up history. The sum of the individual
study sought to further investigate the time interval to histories for the cohort of patients with HD resulted in
the development of breast carcinoma in women with the expected number of breast carcinoma cases in the
HD treated with and without radiotherapy. To provide cohort. The standardized incidence ratio (SIR) was
an adequate model for our data, we utilized the PHPH calculated by dividing the observed (Obs) count of
statistical model to evaluate both the short-term and breast carcinomas by the expected (Exp) count. Esti-
long-term effects that radiotherapy has on breast car- mates of the expected number of cases were based on
cinoma-free survival of female survivors of HD.728 a very large general population. Therefore, in the sub-
The PHPH model is composed of two PH models, one sequent analysis, their variability was ignored. The
for the long-term effect and another to model the hypothesis that the mean SIR is equal to 1 was tested
short-term effect of a given intervention, using the chi-square statistic (Obs-Exp)2/Exp. Confi-

dence intervals (CI) were derived from the Poisson
MATERIALS AND METHODS distribution of the counts. For all SIR values, 95% CI
Data were extracted from nine Surveillance, Epidemi- were calculated. Two-sided P values were calculated
ology, and End Results (SEER) registries (http://seer. and significant differences were defined as P - 0.05.
cancer.gov). The cohort consisted of 8036 women who
were diagnosed with HD and received their primary Survival Analysis
treatment between 1973 and 1999. These patients Survival analysis methodology is a more precise in-
were analyzed for incidence of subsequently diag- strument than the analysis of incidence based on Pois-
nosed breast carcinoma based on whether or not they son processes-it is not based on grouped data, it
received radiotherapy for treatment of RD. treats the unknown baseline rates as nuisance param-

eters to be estimated, and it takes explicit account of
Analysis of Incidence individual follow-up and censoring. Multivariate sur-
Analysis of incidence is designed to compare the ob- vival analysis was performed within the cohort of pa-

served number of breast carcinoma patients among tients with RD. Time to the diagnosis of breast carci-

females previously treated for HD and the number of nom afte treatmento RD datdo ot suppot the

observednoma after treatment for HD data do not support the

of this evaluation is to determine if the incidence of proportional hazard (PH) model most commonly used

breast carcinoma is higher in patients with RD than in to analyze such data.3" To provide an adequate model
theastecarcinomal isphighpatio f so, howithi Halteration for the data, we used the PHPH model, recently intro-
the general population and, if so, how this duced by a number of authors to describe departures
in incidence is affected by radiotherapy, from proportionality of hazards in the presence of

SEER breast carcinoma and population files were long-term survivors.2 7 This model includes the PH
used to derive the incidence of primary breast carci- model as a nested special case and has the form
noma (number of cases per person-year) by age at
diagnosis of HD and year of HD diagnosis (http:// G(t[Iz) = exp[0 00(z){1 - F(z)(t)}]
seer.cancer.gov). To derive the set at risk, counts of
women alive with breast carcinoma were subtracted where G is a survival function, F is the baseline sur-
from female population estimates based on age and vival function, 00 is the baseline long-term survival
year. For each age-year cell, incidence was repre- rate, and z is the vector of explanatory variables cod-
sented by a ratio of the count of primary breast car- ing the effect of radiotherapy and age on breast car-
cinoma cases observed within the year over the aver- cinoma-free survival. The predictors 0 and 1 represent
age number of females at risk in the cell. For the relative risks (RR) for long-term and short-term sur-
subset of patients with HD, the expected number of vival, respectively. If q = 1, then the PHPH model
breast carcinoma cases was calculated based on the becomes the PH model.
methods described by Breslow et al.29 The follow-up The long-term effect models the chance of devel-
for each particular patient with HD was represented as oping breast carcinoma after treatment for HD. The
a line segment on the so-called Lexis diagram (a rep- short-term effect models variations in how quickly
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TABLE I TABLE 2
Patient Characteristics of the 8036 Women Identified in the SEER Patient Characteristics of 183 Women Who Developed Breast
Database Who Were Diagnosed with Hodgkin Disease between 1973- Carcinoma after Treatment for HD with or without RT
1999 Based on Treatment with or without RT

Characteristics RT No RT Total Total N%)
Characteristics RT No RT Total Total M%)

Age at diagnosis of HD (yrs)
Age at diagnosis (yrs) 0-20 39 7 46 25.1

0-19 917 479 1396 17.4 21-30 36 8 44 24.0
20-29 1538 844 2382 29.6 31-40 28 8 36 19.7
30-39 833 538 1371 17.1 >40 17 23 40 21.9
->40 754 1434 2188 27.2 Unknown 13 4 17 9.3

Unknown 699 8.7 Total 133 50 183
Total 4042 3295 8036 Calendar yr of diagnosis of HD

Calender yr of diagnosis 1973-1974 16 2 18 9.8
1973-1974 279 169 448 5.6 1975-1979 50 12 62 33.9
1975-1979 811 473 1284 16.0 1980-1984 45 17 62 33.9
1980-1984 806 621 1427 17.8 1985-1989 17 8 25 13.7
1985-1989 876 664 1540 19.2 1990-1994 5 9 14 7.7
1990-1994 844 826 1670 20.8 1995-1999 0 2 2 1.1
1995-1999 817 850 1667 20.7 Total 133 50 183
Total 4433 3603 8036 Stage of HD

Stage at diagnosis Local 14 11 25 13.7
Local 845 501 1346 16.7 Regional 15 2 17 9.3
Regional 1443 688 2131 26.5 Distant 7 10 17 9.3
Distant 476 1240 1716 21.4 Unknown 97 27 124 67.8
Unknown 2843 35.4 Total 133 50 183
Total 2764 2429 8036 Median follow-up (yrs) 14.0 9.0

Subsequent breast carcinoma
Yes 133 50 183 2.3 HD: Hodgkin disease; ET: radio therapy.
No 4300 3553 7853 97.7
Total 4433 3603 8036

Median follow-up (yrs) 8.5 4.0 at HD diagnosis was 32.0 years. Based on SEER summary

SEER: Surveillance, Epidemiology, and End Results program; RT: radio therapy. staging, 16.7% of women had localized disease, 26.5%

had regional disease, 21.4% had distant disease, and

staging information was not available for 35.4% of pa-
tients. Women with local and regional disease were

secondary cancers develop. We may speculate that the more likely to be treated with radiotherapy (62.8% and
long-term effect is associated with the overall carcino- 67.7%, respectively) than women with distant disease

genic potential of HD and its treatment, whereas the (27.7%). Although information regarding the use of ra-
short-term effect is associated with the timing and diotherapy in initial treatment was not available for 8.7%
biology of breast carcinoma latency after HD. Infer- of patients, of the remaining 7337 women, 55.1% re-
ence procedures for the PHPH model as a member of ceived radiotherapy and 44.9% did not.

the so-called nonlinear transformation models family One hundred eighty-three women (2.3%) were di-
are provided in Tsodikov. 27'28 If long-term and short- agnosed subsequently with breast carcinoma. The
term effects are of the opposite sign, survival curves characteristics of these women are displayed in Table
may cross. The PH model is insensitive to such alter- 2. The median follow-up was 14.0 years for women
natives. The responses reproduced by the PHPH with HD treated with radiotherapy and 9.0 years for
model are more diverse than those modeled by the PH women who did not receive radiotherapy as part of

family. In particular, the PHPH model represents the their initial HD treatment.

survival curves by a superposition of the long-term The results of the analysis of breast carcinoma
and the short-term effects. If 0 = 1, long-term survival incidence are presented in Table 3. Women with a
for any level of z will be the same, whereas the survival history of HD, regardless of whether they received
curves will be different in the short term. radiotherapy or not as part of their treatment, had an

increased risk of breast carcinoma compared with the

RESULTS general population. This risk was greater for women
The patient characteristics of the 8036 women identified who received radiotherapy (SIR = 3.17, P < 0.01) than
in the 9 SEER registries diagnosed with HD between for women who did not receive radiotherapy (SIR

1973 and 1999 are presented in Table 1. The median age - 1.67, P < 0.01). Women with HD who were treated
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TABLE 3
Analysis of Breast Carcinoma Incidence and Hypotheses Testing

Observed count Expected count (based on P value
Effect (HD) general population) SIR (95% CI) (SIR = 1)

HD, no RT vs. general population 50.00 29.95 1.67 (1.24, 2.20) < 0.01
HD, RT vs. general population 134.00 42.23 3.17 (2.66, 3.79) < 0.01
HD, RT vs. HD, no RT (homogeneity) 134.00 vs. 50.00 29.95 vs. 42.23 1.90 < 0.01

HD: Hodgkin disease; general population: based on nine Surveillance, Epidemiology, and End Results program registries; SIR; standardized incidence ratio; CI: confience interval; RT: radio therapy.

'E:
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3333 I YB3 10573 1010300 r43 -1 • • from the time of diagnosis of Hodgkin disease for women treated with
At 13:& 4421 3122 2252 1403- 34 413 3 "j and without radiotherapy. BRC: breast carcinoma; RT: radiotherapy.

with radiotherapy had a greater risk of developing long-term breast carcinoma-free survival (RR = 1.84, P

breast carcinoma than women who did not receive = 0.01). However, the radiotherapy group enjoys a short-

radiation (SIR = 1.90, P < 0.01). term reduction in breast carcinoma (RR = 0.45, P
To study the effect of radiotherapy in greater detail, = 0.01). Long-term breast carcinoma-free survival was

we performed survival analyses of the time to diagnosis not influenced by the age at diagnosis of HD (P = 0.18).

of breast carcinoma after treatment for HD by age at Conversely, short-term breast carcinoma-free survival
diagnosis of HD and by whether radiotherapy was re- was significantly dependent on age at HD diagnosis (P

ceived. The Kaplan-Meier curves for women treated _< 0.01), with an adverse effect for women > 31 years that
with and without radiotherapy cross at approximately 18 increased with increasing age.

years after the diagnosis of HD (Fig. 1). Figure 2 demon-
strates that the expected survival curves under the PH DISCUSSION
model are virtually the same for the two groups and the The increased risk for development of breast carci-

log-rank test and the PH model failed to detect any noma conferred by the use of radiotherapy in the
difference between the groups with respect to breast treatment of HD has been documented in many stud-
carcinoma-free survival (P = 0.79). The search for a ies.1,3,5,7-22 After evaluation of a very large population

model that would be sensitive to the family of altema- database, our independent calculation of the excess
tives as shown in Figure 1 has led us to the PHPH model. risk of developing breast carcinoma is in agreement

Two factors were included in the model-age in years with reported values in the literature. 7 -'1n18'2 - 22

(0-19, 20-29, 30-39, -> 40) and the use of radiotherapy Women whot received radiotherapy for treatment of

in the treatment of HD (yes or no). The observed and HD had an SIR of 3.17 (P < 0.01) for breast carcinoma
expected survival curves using the PHPH model are in a compared with the general population and an SIR of
very good agreement (Fig. 3). The results of multivariate 1.90 (P < 0.01) when compared with women with HD

analysis, variable selection, and hypothesis testing based who did not receive radiotherapy. The PH model was
on the PHPH model are presented in Table 4. There is a unable to detect a difference (P = 0.79) in breast

significant adverse effect of the use of radiotherapy on carcinoma-free survival between the two groups. Us-
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ing the PHPH model, a sophisticated statistical instru- treatment. We may assume that the time interval from
ment that, unlike the PH model, has the ability to HD diagnosis to the diagnosis of a preexisting breast

model crossing curves, a significant difference in carcinoma is shorter than for cancers that have yet to
breast carcinoma-free survival was detected. Although develop, as a portion of the latency period for preex-
the use of radiotherapy in the treatment of HD results isting neoplasms has already elapsed at the time of HD
in an adverse effect on long-term breast carcinoma- diagnosis. In contrast, the use of radiotherapy for the
free survival, it also results in a short-term reduction treatment of HD may induce breast carcinomas that
in the subsequent diagnosis of breast carcinoma. This have their full latency period ahead. As a result, the

noteworthy finding deserves further explanation. average time it takes for a clinically apparent breast
Breast carcinomas observed after HD may stem carcinoma to be diagnosed is longer in the group

from two distinct categories, i.e., those occurring treated with radiotherapy whereas the overall long-
spontaneously and those induced by radiotherapy. term risk in this group is higher as radiotherapy-in-
Spontaneously occurring breast carcinoma may be duced secondary malignancies develop in addition to
preexistent in a subclinical form at the time of treat- the number of naturally occurring spontaneous ma-
ment for HD, or it may develop at some point after lignancies. Another possible explanation is that radio-
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TABLE 4 of morbidity and mortality for long-term survivors of
Multivariate Survival Analysis and Hypotheses Testinga HD. Comprehensive analysis concerning the malig-

Effect RR (95% Q) P value nant potential and natural histories of such cancers is
not possible based on the information provided in the

RT vs. no RT, long term 1.84 (1.18, 2.87) 0.01 SEER registries and was not performed in the current
RT vs. no RT, short term 0.45 (0.26, 0.79) 0.01 study. Such important questions would require a de-
Age, long term - 0.18 tailed database with more rigorous follow-up informa-
Age 21-30 vs. !5 20, short-term - 0.38 tion than that provided by the SEER registries.
Age 31-40 vs. - 30, short term 2.06 (1.26, 3.37) 0.01
Age > 40 vs. -30, short term 4.15 (2.68, 6.44) < 0.01 In several other studies, the greatest risk for sec-

ond primary breast carcinoma after treatment for HD
"Estimates are presented for significant effects only. has been reported for young adolescents.5,12,17,2°'31

RR and P values are adjusted for confounding using a multivariate survival model. The proposed explanation for this observation is that
RR: relative risk or hazard ratio; Cl: confidence interval; RT: radio therapy; age: age at treatment for radiotherapy carries the greatest carcinogenic poten-
Hodgkin disease. tial for actively proliferating breast tissue. Prepubes-

cent girls and women whose mammary tissue has
therapy exerts a therapeutic effect on preexistent, sub- completed proliferation may have an increased overall
clinical breast carcinoma, thus eliminating breast risk, but not to the degree observed for adolescents.
carcinomas whose latency period has partially Unlike several other studies, the long-term risk of de-
elapsed. The overall effect is, again, a lengthening of veloping a second primary breast carcinoma did not
the average interval for the diagnosis of breast carci- vary based on age at HD diagnosis on multivariate

noma in women with HD treated with radiotherapy analysis (P = 0.18). One explanation for the lack of
compared with women who did not receive radiother- effect of age at HD diagnosis on the risk of subsequent
apy. breast carcinoma in the current analysis is that the

Alternatively, a positive short-term effect of radio- median age at diagnosis of HD was 32.0 years of age.
therapy on breast carcinoma risk may not be a causal The majority of patients (53%) were -Ž 30 years of age
one. One other explanation is that younger patients when HD was diagnosed and only 17.4% of patients
may have a stronger immune system and a better were < 20 years of age and in what many consider to
overall heath status than older patients. For this rea- be the highest risk group.
son, breast carcinoma latency may be longer in The range of follow-up times may have an effect
younger patients. In some cohorts, radiotherapy may on the accuracy of the estimation of the long-term risk
be applied more often in younger patients, as was of developing breast carcinoma after treatment for

observed in our analysis. As a result, breast carcinoma HD. Differential follow-up between patients treated
cells may show longer latency in the generally younger with and without radiotherapy is explained, in part, by
patients who receive radiotherapy. the finding that in the current study, younger patients

Radiotherapy for HD, however, may lengthen the are treated with radiotherapy more often than older
interval to the subsequent development of breast car- patients. Due to differences in expected residual sur-

cinoma through various mechanisms. Radiation may vival, the group of patients treated with radiotherapy
exert a therapeutic effect on subclinical breast carci- has a longer length of follow-up. The shorter follow-up
noma. Radiotherapy may also result in an alteration of for patients who did not receive radiotherapy may

the hormonal milieu that promotes breast carcinoma have resulted in a lack of power to detect differences
development. Travis et al.22 demonstrated that in the long-term risk for developing breast carcinoma
women who received a radiotherapy dose of - 5 Gray by age group in the current analysis. Women who
to the ovaries had a decreased risk (RR = 0.4) of received radiotherapy had a much longer median fol-
subsequently developing breast carcinoma compared low-up (8.5 years) than women who did not receive
with women who received lower doses. Unfortunately, radiotherapy (4.0 years). This difference in follow-up
such detailed information, including the size, shape, was even greater for the women who were subse-
and location of radiation portals and the dose to the quently diagnosed with breast carcinoma, with a me-
ovaries, is not recorded in the SEER database. It is dian follow-up of 14.0 years for women who received

conceivable, however, that women who received ra- radiotherapy compared with 9.0 years for women who
diotherapy to the abdomen and pelvis received did not receive radiotherapy. Statisticians have formu-
enough of a dose to result in ovarian dysfunction, lated explicit conditions as to what kind of loss to
resulting in hormonal alterations and a decreased risk follow-up is likely to bias the conclusions of statistical
of secondary breast carcinoma, analysis. Bias would occur if loss to follow-up were

Second malignancies remain an important source associated with the time to development of breast
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carcinoma (informative censoring) in either group. on Medicare reimbursement forms, one study deter-

Unfortunately, it is impossible to verify if this is oc- mined that the use of radiotherapy in the treatment of

curring based on data representing competing risks of breast carcinoma was not documented in the SEER
loss to follow-up compared with the development of database in approximately 18% of patients." There-

breast carcinoma.32 In other words, neither descrip- fore, information regarding the use of radiotherapy

tive statistics nor a more sophisticated statistical anal- based on data gleaned from the SEER registries should

ysis is able to verify if data are subject to informative be interpreted with caution.
loss to follow-up. In summary, the PH model commonly used to

Differential follow-up between the groups is not analyze survival data such as those presented in the
in itself a source of bias. There are several possible current report was unable to detect a difference in

explanations as to why patients who receive radiother- breast carcinoma-free survival in women with HD
apy have longer follow-up times. The longer follow-up treated with and without radiotherapy. This is because
in the group that received radiotherapy is reflective of the survival curves cross as the hazard ratios for the
the finding that radiotherapy was used alone as a two groups change over time. The PHPH regression
curative modality in the earlier years of the current model, which is sensitive to changes in hazard ratios
analysis and chemotherapy was used in later years. and is able to analyze data in the presence of long-
Also, in this cohort, the mean age of patients who term survivors, provided a good model for our data.
received radiotherapy is 34 years whereas patients Using the PHPH model in a multivariate analysis, the
who did not receive radiotherapy as part of their treat- use of radiotherapy in the treatment of HD is associ-

ment regimen were on average 45 years old at the time ated with a short-term reduction in the subsequent
of diagnosis of HD. This results in a generally longer diagnosis of breast carcinoma and has an adverse
follow-up in the radiotherapy group, as follow-up is effect on long-term breast carcinoma-free survival.
affected by differential expected residual survival. It
should be stressed that the median lengths of follow-
up presented in Tables 1 and 2 are based on either REFERENCES
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